首页 | 本学科首页   官方微博 | 高级检索  
     


Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy
Authors:Khosravani Houman  Altier Christophe  Simms Brett  Hamming Kevin S  Snutch Terrance P  Mezeyova Janette  McRory John E  Zamponi Gerald W
Affiliation:Cellular and Molecular Neurobiology Research Group, University of Calgary, Canada.
Abstract:Childhood absence epilepsy (CAE) is a type of generalized epilepsy observed in 2-10% of epileptic children. In a recent study by Chen et al. (Chen, Y., Lu, J., Pan, H., Zhang, Y., Wu, H., Xu, K., Liu, X., Jiang, Y., Bao, X., Yao, Z., Ding, K., Lo, W. H., Qiang, B., Chan, P., Shen, Y., and Wu, X. (2003) Ann. Neurol. 54, 239-243) 12 missense mutations were identified in the CACNA1H (Ca(v)3.2) gene in 14 of 118 patients with CAE but not in 230 control individuals. We have functionally characterized five of these mutations (F161L, E282K, C456S, V831M, and D1463N) using rat Ca(v)3.2 and whole-cell patch clamp recordings in transfected HEK293 cells. Two of the mutations, F161L and E282K, mediated an approximately 10-mV hyperpolarizing shift in the half-activation potential. Mutation V831M caused a approximately 50% slowing of inactivation relative to control and shifted half-inactivation potential approximately 10 mV toward more depolarized potentials. Mean time to peak was significantly increased by mutation V831M but was unchanged for all others. No resolvable changes in the parameters of the IV relation or current kinetics were observed with the remaining mutations. The findings suggest that several of the Ca(v)3.2 mutants allow for greater calcium influx during physiological activation and in the case of F161L and E282K can result in channel openings at more hyperpolarized (close to resting) potentials. This may underlie the propensity for seizures in patients with CAE.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号