首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*
Authors:Bair Catherine L  Rifat Dalin  Black Lindsay W
Institution:Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201-1503, USA.
Abstract:The Escherichia coli isolate CT596 excludes infection by the Myoviridae T4 ip1(-) phage that lacks the encapsidated IPI* protein normally injected into the host with the phage DNA. Screening of a CT596 genomic library identified adjacent genes responsible for this exclusion, gmrS (942 bp) and gmrD (708 bp) that are encoded by a cryptic prophage DNA. The two genes are necessary and sufficient to confer upon a host the ability to exclude infection by T4 ip1(-) phage and other glucosyl-hydroxymethylcytosine (glc-HMC) Tevens lacking the ip1 gene, yet allow infection by phages with non-glucoslyated cytosine (C) DNA that lack the ip1 gene. A plasmid expressing the ip1 gene product, IPI*, allows growth of Tevens lacking ip1 on E. coli strains carrying the cloned gmrS/gmrD genes. Members of the Teven family carry a diverse and, in some cases, expanded set of ip1 locus genes. In vivo analysis suggests a family of gmr genes that specifically target sugar-HMC modified DNA have evolved to exclude Teven phages, and these exclusion genes have in turn been countered by a family of injected exclusion inhibitors that likely help determine the host range of different glc-HMC phages.
Keywords:glc-HMC  glucosylated hydroxymethylcytosine  CTS  capsid targeting sequence  eop  efficiency of plating  DUF  domain of unknown function  MDS  modification-dependent system
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号