首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced neurally evoked responses and inhibition of norepinephrine reuptake in rat mesenteric arteries after spinal transection
Authors:Brock James A  Yeoh Melanie  McLachlan Elspeth M
Institution:Prince of Wales Medical Research Institute, University of New South Wales, Randwick, NSW 2031, Australia. j.brock@unsw.edu.au
Abstract:In patients with high thoracic spinal lesions that remove most of the central drive to splanchnic preganglionic neurons, visceral or nociceptive stimuli below the lesion can provoke large increases in blood pressure (autonomic dysreflexia). We have examined the effects of T4 spinal transection on isometric contractions of mesenteric arteries isolated from spinalized rats. Nerve-evoked contractions involved synergistic roles for norepinephrine and ATP. At 7 wk after spinal transection, responses to perivascular stimulation at 1-5 Hz were enhanced fivefold, whereas the alpha1-adrenoceptor antagonist prazosin (10 nM) produced a twofold larger reduction in contraction (to 20 pulses at 10 Hz) than in unoperated controls. In contrast, the reduction in nerve-evoked contractions by the P2-purinoceptor antagonist suramin (0.1 mM) and the responses to the P2-purinoceptor agonist alpha,beta-methylene ATP or to high K+ concentration did not greatly differ between groups, indicating that arteries from spinalized rats were not generally hyperreactive. Sensitivity to the alpha1-adrenoceptor agonist phenylephrine was enhanced in arteries from spinalized rats, and the difference from controls was abolished by the norepinephrine uptake blocker desmethylimipramine. Sensitivity to the alpha1-adrenoceptor agonist methoxamine, which is not a substrate for the neuronal norepinephrine transporter, was similar among the groups. Thus the increased neurally evoked response after spinal transection appeared to be due to a reduction in neuronal uptake of released norepinephrine, a mechanism that did not explain the enhanced response of tail arteries after spinal transection that we previously reported. The findings provide further support for potentiated neurovascular responses contributing to the genesis of autonomic dysreflexia.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号