首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potent inhibition of mammalian ribonucleases by 3', 5'-pyrophosphate-linked nucleotides.
Authors:N Russo  R Shapiro
Institution:Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract:Molecular modeling based on the crystal structure of the complex of bovine pancreatic RNase A with the inhibitor 5'-diphosphoadenosine 3'-phosphate (ppAp) (Leonidas, D. D., Shapiro, R., Irons, L. I., Russo, N., and Acharya, K. R. (1997) Biochemistry 36, 5578-5588) was used to design new inhibitors that extend into unoccupied regions of the enzyme active site. These compounds are dinucleotides that contain an unusual 3',5'-pyrophosphate linkage and were synthesized in solution by a combined chemical and enzymatic procedure. The most potent of them, 5'-phospho-2'-deoxyuridine 3'-pyrophosphate, P' --> 5'-ester with adenosine 3'-phosphate (pdUppAp), binds to RNase A with Ki values of 27 and 220 nM at pH 5.9 and 7, respectively. These values are 6-9-fold lower than those for ppAp and 50-fold lower than that for the transition state analogue, uridine vanadate. pdUppAp has broad specificity; it is an effective inhibitor of at least two other members of the pancreatic RNase superfamily, human RNase-2 (eosinophil-derived neurotoxin) and RNase-4, which share only 36-44% sequence identity with the pancreatic enzyme. The potency of pdUppAp and the other inhibitors described here depends critically on the extended internucleotide linkage; the pyrophosphate group enhances dinucleotide binding to the three RNases by 2.1-2.9 orders of magnitude, as compared with a monophosphate. These data give further insight into the organization of the catalytic centers of the various RNases. Moreover, the new class of inhibitors provides a useful means by which to probe the biological actions of these and other related enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号