首页 | 本学科首页   官方微博 | 高级检索  
     


Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus-like particles administered by different routes of inoculation
Authors:Buonaguro L  Visciano M L  Tornesello M L  Tagliamonte M  Biryahwaho B  Buonaguro F M
Affiliation:Laboratory of Viral Oncology and AIDS Reference Center, Istituto Nazionale Tumori Fond. G. Pascale, Via Mariano Semmola, 1, 80131 Naples, Italy.
Abstract:We have recently developed a candidate human immunodeficiency virus type 1 (HIV-1) vaccine model, based on virus-like particles (VLPs) expressing gp120 from a Ugandan HIV-1 isolate of clade A (HIV-VLP(A)s), which shows the induction of neutralizing antibodies as well as cytotoxic T lymphocytes (CTL) in BALB/c mice by intraperitoneal (i.p.) administration. In the present study, immunization experiments based on a multiple-dose regimen have been performed with BALB/c mice to compare different routes of administration. i.p. and intranasal (i.n.), but not oral, administration induce systemic as well as mucosal (vaginal and intestinal) immunoglobulin G (IgG) and IgA responses. These immune sera exhibit >50% ex vivo neutralizing activity against both autologous and heterologous primary isolates. Furthermore, the administration of HIV-VLP(A)s by the i.n. immunization route induces a specific CTL activity, although at lower efficiency than the i.p. route. The HIV-VLP(A)s represent an efficient strategy to stimulate both arms of immunity; furthermore, the induction of specific humoral immunity at mucosal sites, which nowadays represent the main port of entry for HIV-1 infection, is of great interest. All these properties, and the possible cross-clade in vivo protection, could make these HIV-VLP(A)s a good candidate for a mono- and multicomponent worldwide preventive vaccine approach not restricted to high-priority regions, such as sub-Saharan countries.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号