首页 | 本学科首页   官方微博 | 高级检索  
     


The B-Z conformational transition and aggregation of poly[d(G-C)] induced by moderate concentrations of Mg(CIO4)2
Authors:E Hamori  T M Jovin
Abstract:Mg(ClO4)2 induces the cooperative B-to-Z transition of poly[d(G-C)]; the salt concentration at the midpoint is 0.26 M. A comparison with previous data for NaCl, MgCl2 and NaClO4 (F.M. Pohl and T.M. Jovin, J. Mol. Biol. 67 (1972) 375) indicates that Mg(ClO4)2 is more effective than would be anticipated from the simple additive effects of the Mg2+ and ClO4- ions (the ionic strengths of the respective transition points are: NaCl, 2.4; MgCl2, 2.1; NaClO4, 1.8 and Mg(ClO4)2, 0.78). These results suggest the importance of specific interactions involving ClO4-, particularly in the presence of Mg2+. The B-Z transition of poly[d(G-C)] can be monitored spectroscopically via the large hyperchromic shift at 295 nm and the inversion in the CD spectrum. The reaction is fully reversible and can be fitted by a monoexponential function with half times varying between 8 and 150 min. The observed relaxation times are strongly dependent on the concentration of Mg(ClO4)2 with a distinct maximum at the transition point, in accordance with a concerted mechanism involving only the B and Z states. As the polymer assumes the Z conformation it progressively aggregates into a gel-like precipitate, which, however, redissolves rapidly upon lowering the salt concentration. The natural DNA from Micrococcus lysodeikticus which has a high GC content of 72% is also precipitated by Mg(ClO4)2 but we do not have direct spectroscopic evidence for the involvement of the Z conformation in this phenomenon. Neither calf thymus DNA (41% GC) nor poly[d(A-T)] (0% GC) aggregates under the same conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号