首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel Nuclear Nesprin-2 Variants Tether Active Extracellular Signal-regulated MAPK1 and MAPK2 at Promyelocytic Leukemia Protein Nuclear Bodies and Act to Regulate Smooth Muscle Cell Proliferation
Authors:Derek T Warren  Tamara Tajsic  Jason A Mellad  Richelle Searles  Qiuping Zhang  Catherine M Shanahan
Institution:From the British Heart Foundation Centre, Division of Cardiovascular Medicine, King''s College London, London SE5 9NU, United Kingdom and ;the §Department of Medicine, Addenbrooke''s Hospital, Cambridge CB2 ZQQ, United Kingdom
Abstract:Nuclear and cytoplasmic scaffold proteins have been shown to be essential for temporal and spatial organization, as well as the fidelity, of MAPK signaling pathways. In this study we show that nesprin-2 is a novel extracellular signal-regulated MAPK1 and 2 (ERK1/2) scaffold protein that serves to regulate nuclear signaling by tethering these kinases at promyelocytic leukemia protein nuclear bodies (PML NBs). Using immunofluorescence microscopy, GST pull-down and immunoprecipitation, we show that nesprin-2, ERK1/2, and PML colocalize and bind to form a nuclear complex. Interference of nesprin-2 function, by either siRNA-mediated knockdown or overexpression of a dominant negative nesprin-2 fragment, augmented ERK1/2 nuclear signaling shown by increased SP1 activity and ELK1 phosphorylation. The functional outcome of nesprin-2 disruption and the resultant sustained ERK1/2 signal was increased proliferation. Importantly, these activities were not induced by previously identified nuclear envelope (NE)-targeted nesprin-2 isoforms but rather were mediated by novel nuclear isoforms that lacked the KASH domain. Taken together, this study suggests that nesprin-2 is a novel intranuclear scaffold, essential for nuclear ERK1/2 signaling fidelity and cell cycle progression.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号