首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RPE65, Visual Cycle Retinol Isomerase, Is Not Inherently 11-cis-specific: SUPPORT FOR A CARBOCATION MECHANISM OF RETINOL ISOMERIZATION*
Authors:T Michael Redmond  Eugenia Poliakov  Stephanie Kuo  Preethi Chander  Susan Gentleman
Institution:From the Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892
Abstract:The mechanism of retinol isomerization in the vertebrate retina visual cycle remains controversial. Does the isomerase enzyme RPE65 operate via nucleophilic addition at C11 of the all-trans substrate, or via a carbocation mechanism? To determine this, we modeled the RPE65 substrate cleft to identify residues interacting with substrate and/or intermediate. We find that wild-type RPE65 in vitro produces 13-cis and 11-cis isomers equally robustly. All Tyr-239 mutations abolish activity. Trp-331 mutations reduce activity (W331Y to ~75% of wild type, W331F to ~50%, and W331L and W331Q to 0%) establishing a requirement for aromaticity, consistent with cation-π carbocation stabilization. Two cleft residues modulate isomerization specificity: Thr-147 is important, because replacement by Ser increases 11-cis relative to 13-cis by 40% compared with wild type. Phe-103 mutations are opposite in action: F103L and F103I dramatically reduce 11-cis synthesis relative to 13-cis synthesis compared with wild type. Thr-147 and Phe-103 thus may be pivotal in controlling RPE65 specificity. Also, mutations affecting RPE65 activity coordinately depress 11-cis and 13-cis isomer production but diverge as 11-cis decreases to zero, whereas 13-cis reaches a plateau consistent with thermal isomerization. Lastly, experiments using labeled retinol showed exchange at 13-cis-retinol C15 oxygen, thus confirming enzymatic isomerization for both isomers. Thus, RPE65 is not inherently 11-cis-specific and can produce both 11- and 13-cis isomers, supporting a carbocation (or radical cation) mechanism for isomerization. Specific visual cycle selectivity for 11-cis isomers instead resides downstream, attributable to mass action by CRALBP, retinol dehydrogenase 5, and high affinity of opsin apoproteins for 11-cis-retinal.
Keywords:Metabolism/Retinoid  Methods/Site-directed Mutagenesis  Protein/Isomerase  Tissue/Organ Systems/Retina  Vision  Vitamins and Cofactors/Vitamin A
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号