首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temperature dependence of delayed light emission in spinach chloroplasts
Authors:Shiger U Itoh  Norio Murata
Institution:

Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Hongo, Tokyo, Japan

Abstract:1. Delayed light of chlorophyll emitted at 0.1–3.9 ms after cessation of repetitive flash light was studied at temperatures between +40 and −196 °C in isolated spinach chloroplasts.

2. Induction kinetics of delayed light varied depending on temperature. It was found to be composed of two phases; one was an initial rapid rise followed by a rather fast decline to a low steady state level (fast phase), and the other was a slow increase after the initial rapid rise to the maximum followed by an insignificant slow decrease to a high steady state level (slow phase). The fast phase existed between −175 and 40 °C with the maximum at −40 °C, while the slow phase, between 0 and 40 °C with the maximum at 25 °C.

3. The intensity of delayed light at −175 °C was found to be less than one fiftieth that at 0 °C, and no delayed light emission was observed at −196 °C within experimental accuracy. This is in contrast to the results reported by Tollin, G., Fujimori, E. and Calvin, M. ((1958) Proc. Natl. Acad. Sci. U.S. 44, 1035–1047) in which the intensity of delayed light measured at −170 °C was about a half that at 0 °C.

4. The induction of delayed light measured at −96 °C was found to be significantly suppressed by the preillumination at −196 °C. This finding suggests that the primary photochemical event still survives at −196 °C without emission of delayed light.

5. Decay kinetics of delayed light after the flash excitation revealed the presence of at least two decay components. A slow decay component with a half decay time of several tens of milliseconds was observed at temperatures higher than 0 °C. A fast decay component with a half decay time of about 0.2 ms was observed at temperatures between −120 and 25 °C. The decay rate of this component was slightly retarded on cooling.

6. The System II particles derived from spinach chloroplasts with digitonin treatment showed a temperature dependence of delayed light similar to that of the chloroplasts. System I particles, on the other hand, scarcely emitted the delayed light at any temperature between 40 and −196 °C.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号