首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Osmoregulation in Dunaliella,Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta
Institution:1. Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;2. Nevada Cytometry Center, University of Nevada, Reno, NV 89557, USA;3. Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512-1095, USA
Abstract:In response to an osmotic stress, Dunaliella tertiolecta osmoregulates by metabolizing intracellular glycerol as compatible solute. Upon the application of a salt stress to 0.17 M or 0.7 M NaCl grown D. tertiolecta cells, rates of total glycerol synthesis were substantially higher than that arising from photosynthetic 14CO2 fixation into glycerol. The source of this extra carbon is the reserve starch pool. The contribution of carbon from the starch breakdown to glycerol synthesis was estimated from the difference between the total glycerol synthesized and that arising from 14CO2 fixation. The maximum observed flux of carbon from 14CO2 to glycerol from photosynthesis was of the order of 15–20 μmol 14C-glycerol mg−1 Chl h−1, whereas the total glycerol synthesis reached about 70 μmol glycerol mg−1 Chl h−1. The contribution of products of starch breakdown to glycerol synthesis increased progressively with increasing salt stress. In light, contrary to prevailing assumptions, both the photosynthesis and the starch breakdown contribute carbon to glycerol biosynthesis. The relative contributions of these two processes in the light, while cells were actively photosynthesizing, depended on the magnitude of the salt stress. On application of dilution stress, the flux of carbon from newly photosynthetically fixed 14CO2 into glycerol was reduced progressively with increasing dilution stress that was also accompanied by a decline in total glycerol contents of the cell. The maximum observed rate of glycerol dissimilation was about 135 μmol glycerol mg−1 Chl h−1.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号