首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potentiation of large conductance KCa channels by niflumic, flufenamic, and mefenamic acids.
Authors:M Ottolia and  L Toro
Institution:Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030.
Abstract:Large conductance calcium-activated K+ (KCa) channels are rapidly activated by niflumic acid dose-dependently and reversibly. External niflumic acid was about 5 times more potent than internal niflumic acid, and its action was characterized by an increase in the channel affinity for Ca2+], a parallel left shift of the voltage-activation curve, and a decrease of the channel long-closed states. Niflumic acid applied from the external side did not interfere with channel block by charybdotoxin, suggesting that its site of action is not at or near the charybdotoxin receptor. Accordingly, partial tetraethylammonium blockade did not interfere with channel activation by niflumic acid. Flufenamic acid and mefenamic acid also stimulated KCa channel activity and, as niflumic acid, they were more potent from the external than from the internal side. Fenamates applied from the external side displayed the following potency sequence: flufenamic acid approximately niflumic acid >> mefenamic acid. These results indicate that KCa channels possess at least one fenamatereceptor whose occupancy leads to channel opening.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号