首页 | 本学科首页   官方微博 | 高级检索  
     


Translational control and the cytoskeleton in Physarum polycephalum
Authors:R D Brodeur  W R Jeffery
Abstract:Translationally active plasmodia of the syncytial slime mold Physarum polycephalum develop into translationally dormant sclerotia during starvation. Although functional mRNA and ribosomes exist in sclerotia, protein synthesis is suppressed at the level of initiation. To test the possibility that alterations in the cytoskeleton may limit protein synthesis, we have examined the distribution of polysomes and actin mRNA in the cytoskeletal (CSK) and soluble (SOL) fractions of Triton X-100-extracted plasmodia and sclerotia. Most of the polysomes and actin mRNA were located in the CSK of plasmodia, while most of the ribosomes and actin mRNA were located in the SOL of sclerotia. The results suggest that ribosomes and mRNA shift from the CSK to the SOL as protein synthesis is suppressed during starvation. Plasmodia and sclerotia can be induced to accumulate excess polysomes by treatment with low levels of the elongation inhibitor cycloheximide. Treatment of plasmodia with cycloheximide caused excess polysomes to accumulate in the SOL, suggesting that the CSK contains a limited capacity for binding translational components and that the association of polysomes with the cytoskeleton is not required for protein synthesis. Treatment of sclerotia with cycloheximide, however, caused polysomes and actin mRNA to accumulate in the CSK, suggesting that the sclerotial cytoskeleton, although depleted in ribosomes and mRNA, is capable of binding translational components. It is concluded that alterations in the sclerotial cytoskeleton are not involved in translational control.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号