Specificity and other properties of three ribonucleases of Tetrahymena pyriformis |
| |
Authors: | A Maouri J G Georgatsos |
| |
Affiliation: | Laboratory of Biochemistry, School of Chemistry, University of Thessaloniki, Greece. |
| |
Abstract: | Three ribonucleases, RNase I, RNase II and RNase III, were purified from the 109,000 X g supernate of detergent-treated Tetrahymena pyriformis strain W. RNases I and II act optimally at pH 5.5-6.0 and are inhibited by increasing concentrations of salts of monovalent cations. RNase III acts optimally at pH 7.5 and is activated 1.5-fold by millimolar concentrations of ZnSO4 and 5-fold by 50 mM KCl. RNases II and III are activated approximately 100% in the presence of 3 M and 5 M urea respectively. All enzymes are heat-sensitive and acid-resistant. They are endonucleases forming 2',3'-cyclic products. Their base specificity, as tested against ribosomal RNAs of known sequence, is as follows: RNase I hydrolyzes preferentially YpN and secondarily GpN bonds, RNase II is highly specific for RpN bonds, though the preparation can also hydrolyze the UpU sequence. Finally the principal targets of RNase III are YpR sequences and secondarily YpY sequences. A shorthand visualization of base specificity of nucleases in the form of right isosceles triangles is presented. The triangles are constructed by subdividing each of the two perpendicular sides in as many units as the maximum number of times the most abundant dinucleotide appears in all substrates employed and plotting the frequency of hydrolysis of each dinucleotide sequence by the enzyme under study. The proximity of each dinucleotide sequence to the hypotenuse or to one of the perpendicular sides is indicative of its susceptibility or resistance to the enzyme's action. |
| |
Keywords: | |
|
|