首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Grapevine leafroll‐associated virus 3 on the physiology in asymptomatic plants of Vitis vinifera
Authors:R Montero  H El aou ouad  D Pacifico  C Marzachì  N Castillo  E García  NF Del Saz  I Florez‐Sarasa  J Flexas  J Bota
Institution:1. Conselleria d'Agricultura, Medi Ambient i Territori. Govern de les Illes Balears, Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Palma de Mallorca, Spain;2. Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Balears, Spain;3. Istituto di Bioscienze e BioRisorse, CNR, Palermo, Italy;4. Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;5. Department of Chemistry, Instituto de la Vid y el Vino de Castilla‐La Mancha (IVICAM), Tomelloso, Spain;6. Department of Molecular Plant Physiology, Max‐Planck‐Institute of Molecular Plant Physiology, Potsdam, Germany
Abstract:Grapevine leafroll disease is one of the most important viral diseases of grapevine (Vitis vinifera) worldwide. Grapevine leafroll‐associated virus 3 (GLRaV‐3) is the most predominant virus species causing this disease. Therefore, it is important to identify GLRaV‐3 effects, especially in plants which do not systematically show visual symptoms. In this study, effects of GLRaV‐3 on grapevine physiology were evaluated in asymptomatic plants of Malvasía de Banyalbufar and Cabernet Sauvignon cvs. Absolute virus quantification was performed in order to determine the level of infection of the treatment. The net carbon dioxide (CO2) assimilation (AN) and electron transport rate (Jflux) were the main parameters affected by the virus. The AN reduction in infected plants was attributed to restrictions in CO2 diffusion caused by anatomical leaf changes and a reduction of Rubisco activity. Those effects were more evident in Malvasia de Banyalbufar plants. The reduction of AN leads to a decrease in the total oxygen uptake rate by the activity of the cytochrome oxidase pathway, producing slight differences in plant growth. Therefore, even though no symptoms were expressed in the plants, the effects of the virus compromised the plant vital processes, showing the importance of early detection of the virus in order to fight against the infection.
Keywords:Chlorophyll fluorescence  Grapevine leafroll‐associated virus 3  leaf anatomy  leaf gas exchange  Rubisco content  virus absolute quantification  Vitis vinifera L
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号