首页 | 本学科首页   官方微博 | 高级检索  
     


A cytoplasmic domain mutation in ClC-Kb affects long-distance communication across the membrane
Authors:Martinez Gilbert Q  Maduke Merritt
Affiliation:Department of Molecular and Cellular Physiology and Program in Biophysics, Stanford University. Stanford, California, United States of America.
Abstract:

Background

ClC-Kb and ClC-Ka are homologous chloride channels that facilitate chloride homeostasis in the kidney and inner ear. Disruption of ClC-Kb leads to Bartter''s Syndrome, a kidney disease. A point mutation in ClC-Kb, R538P, linked to Bartter''s Syndrome and located in the C-terminal cytoplasmic domain was hypothesized to alter electrophysiological properties due to its proximity to an important membrane-embedded helix.

Methodology/Principal Findings

Two-electrode voltage clamp experiments were used to examine the electrophysiological properties of the mutation R538P in both ClC-Kb and ClC-Ka. R538P selectively abolishes extracellular calcium activation of ClC-Kb but not ClC-Ka. In attempting to determine the reason for this specificity, we hypothesized that the ClC-Kb C-terminal domain had either a different oligomeric status or dimerization interface than that of ClC-Ka, for which a crystal structure has been published. We purified a recombinant protein corresponding to the ClC-Kb C-terminal domain and used multi-angle light scattering together with a cysteine-crosslinking approach to show that the dimerization interface is conserved between the ClC-Kb and ClC-Ka C-terminal domains, despite the fact that there are several differences in the amino acids that occur at this interface.

Conclusions

The R538P mutation in ClC-Kb, which leads to Bartter''s Syndrome, abolishes calcium activation of the channel. This suggests that a significant conformational change – ranging from the cytoplasmic side of the protein to the extracellular side of the protein – is involved in the Ca2+-activation process for ClC-Kb, and shows that the cytoplasmic domain is important for the channel''s electrophysiological properties. In the highly similar ClC-Ka (90% identical), the R538P mutation does not affect activation by extracellular Ca2+. This selective outcome indicates that ClC-Ka and ClC-Kb differ in how conformational changes are translated to the extracellular domain, despite the fact that the cytoplasmic domains share the same quaternary structure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号