首页 | 本学科首页   官方微博 | 高级检索  
     


A Ddc2-Rad53 fusion protein can bypass the requirements for RAD9 and MRC1 in Rad53 activation
Authors:Lee Soo-Jung  Duong Jimmy K  Stern David F
Affiliation:Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
Abstract:Activation of Rad53p by DNA damage plays an essential role in DNA damage checkpoint pathways. Rad53p activation requires coupling of Rad53p to Mec1p through a “mediator” protein, Rad9p or Mrc1p. We sought to determine whether the mediator requirement could be circumvented by making fusion proteins between the Mec1 binding partner Ddc2p and Rad53p. Ddc2-Rad53p interacted with Mec1p and other Ddc2-Rad53p molecules under basal conditions and displayed an increased oligomerization upon DNA damage. Ddc2-Rad53p was activated in a Mec1p- and Tel1p-dependent manner upon DNA damage. Expression of Ddc2-Rad53p in Δrad9 or Δrad9Δmrc1 cells increased viability on plates containing the alkylating agent methyl methane sulfonate. Ddc2-Rad53p was activated at least partially by DNA damage in Δrad9Δmrc1 cells. In addition, expression of Ddc2-Rad53p in Δrad24Δrad17Δmec3 cells increased cell survival. These results reveal minimal requirements for function of a core checkpoint signaling system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号