首页 | 本学科首页   官方微博 | 高级检索  
   检索      


p-CMBS Modifies Extrafacial Sulfhydryl Groups at the Chara Plasma Membrane: Activation of Ca2+ Influx and Inhibition of Two Different K+ Currents
Authors:G Thiel
Abstract:The effect of the membrane impermeant sulfhydryl group (SH) reagent, p-chloromercuribenzenesulfonic acid (p-CMBS), on electrical membrane transport properties of the giant alga, Chara corallina, was determined. In an external medium with a high K+ concentration (5 mM) cells typically exhibited stable membrane potentials close to the K+equilibrium potential. The steady-state current-voltage (I-V) relation could be dissected into two distinct components: an almost linear ohmic leak current and a voltage-dependent K+ current. Adding 0.5 mM p-CMBS to the external medium resulted in an immediate, short depolarization transient (resembling the time course of an action potential) and was associated with a slow down of the cytoplasmic streaming velocity. The depolarization, as well as the streaming inhibition, could be abolished by pretreating cells with the Ca2+ channel inhibitor, LaCl3. This suggests that the depolarization transient reflected a p-CMBS induced Ca2+ influx, a scenario known to trigger membrane excitation and slow down of cytoplasmic streaming. From the I-V analysis it appeared that p-CMBS also caused a reversible inhibition of two additional transmembrane currents: (1) a reduction of a leak current and (2) a modification of the deactivation kinetics of the voltage-dependent K+ channels. From the I-V difference analysis, the inhibited leak current was identified as a K+ current, because the reversal potential was close to the estimated K+ equilibrium potential. Control experiments have furthermore shown that the mercapto reagent, dithiothreitol, partly reversed the effect of p-CMBS. This strengthens the view that the action of the mercurial is related to a specific and direct modification of SH groups. The p-CMBS-evoked inhibition of K+ currents was not abolished by the LaCl3 pretreatment, which suggests that the effect of the SH reagent is not induced indirectly by p-CMBS-triggered Ca2+ influx. Therefore, it is suggested that the mercurial interacts direcly with the K+ transport protein.
Keywords:Sulfhydryl (SH) groups  p-CMBS  membrane transport  K+ channels  calcium  voltage clamp  Chara
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号