首页 | 本学科首页   官方微博 | 高级检索  
     


Photobiological and Structural Studies of Light-driven Movements in the Solar-tracking Leaf of Lupinus palaestinus Bioss. (Fabaceae)
Authors:Ella Werker  T. Shak  D. Koller
Abstract:The compound, palmate lamina of Lupinus palaestinus reorients photonastically, as well as phototropically in response to non-directional and directional light signals, respectively, by structural deformations of pulvini. When the excitation provided by directional light is maintained constant (fluence rate, angle of incidence and azimuth, with respect to the leaflet laminae), the entire lamina reorients towards it at a constant angular velocity over a considerable time interval and displacement. The laminar pulvinules are considerably longer than the subtending common petiolar pulvinus and therefore contribute most to laminar reorientation. The pulvinar region is characterized by transverse folds around its circumference, and longitudinal rib-like thickenings on the external walls of its epidermis that facilitate axial and transverse deformations. Specialized “joints”, at the distal and proximal ends of each pulvinule, contribute most to its flexing. Anthocyanin is notable by its absence. Specialized “motor” tissues surrounding the central vascular core participate in pulvinar deformation by undergoing directional and differential volume changes. The bundle sheath is characterized by numerous starch grains. The multi-layered cortical parenchyma exhibits an abundance of transversely oriented primary pit fields and associated plasmodesmata. When the leaflet lamina rotates around its midrib, the pulvinus twists along its axis, exhibiting epidermal and cortical deformation. The functional significance of these specializations is discussed.
Keywords:Light responses  pulvinus  solar-tracking  structural specializations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号