首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiological role and regulation of the Na+/H+ exchanger
Authors:Malo Mackenzie E  Fliegel Larry
Institution:Department of Biochemistry, 347 Medical Science Building, University of Alberta, Edmonton, AB T6G 2H7, Canada.
Abstract:In mammalian eukaryotic cells, the Na+/H+ exchanger is a family of membrane proteins that regulates ions fluxes across membranes. Plasma membrane isoforms of this protein extrude 1 intracellular proton in exchange for 1 extracellular sodium. The family of Na+/H+ exchangers (NHEs) consists of 9 known isoforms, NHE1-NHE9. The NHE1 isoform was the first discovered, is the best characterized, and exists on the plasma membrane of all mammalian cells. It contains an N-terminal 500 amino acid membrane domain that transports ions, plus a 315 amino acid C-terminal, the intracellular regulatory domain. The Na+/H+ exchanger is regulated by both post-translational modifications including protein kinase-mediated phosphorylation, plus by a number of regulatory-binding proteins including phosphatidylinositol-4,5-bisphosphate, calcineurin homologous protein, ezrin, radixin and moesin, calmodulin, carbonic anhydrase II, and tescalcin. The Na+/H+ exchanger is involved in a variety of complex physiological and pathological events that include regulation of intracellular pH, cell movement, heart disease, and cancer. This review summarizes recent advances in the understanding of the physiological role and regulation of this protein.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号