Peroxyl radicals are potential agents of lignin biodegradation |
| |
Authors: | Kapich A N Jensen K A Hammel K E |
| |
Affiliation: | Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, WI 53705, USA. |
| |
Abstract: | Past work has shown that the extracellular manganese-dependent peroxidases (MnPs) of ligninolytic fungi degrade the principal non-phenolic structures of lignin when they peroxidize unsaturated fatty acids. This reaction is likely to be relevant to ligninolysis in sound wood, where enzymes cannot penetrate, only if it employs a small, diffusible lipid radical as the proximal oxidant of lignin. Here we show that a non-phenolic beta-O-4-linked lignin model dimer was oxidized to products indicative of hydrogen abstraction and electron transfer by three different peroxyl radical-generating systems: (a) MnP/Mn(II)/linoleic acid, (b) arachidonic acid in which peroxidation was initiated by a small amount of H(2)O(2)/Fe(II), and (c) the thermolysis in air of either 4,4'-azobis(4-cyanovaleric acid) or 2,2'-azobis(2-methylpropionamidine) dihydrochloride. Some quantitative differences in the product distributions were found, but these were attributable to the presence of electron-withdrawing substituents on the peroxyl radicals derived from azo precursors. Our results introduce a new hypothesis: that biogenic peroxyl radicals may be agents of lignin biodegradation. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|