首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proteomic analysis of honeybee (Apis mellifera L.) pupae head development
Authors:Zheng Aijuan  Li Jianke  Begna Desalegn  Fang Yu  Feng Mao  Song Feifei
Institution:Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture/Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China.
Abstract:The honeybee pupae development influences its future adult condition as well as honey and royal jelly productions. However, the molecular mechanism that regulates honeybee pupae head metamorphosis is still poorly understood. To further our understand of the associated molecular mechanism, we investigated the protein change of the honeybee pupae head at 5 time-points using 2-D electrophoresis, mass spectrometry, bioinformatics, quantitative real-time polymerase chain reaction and Western blot analysis. Accordingly, 58 protein spots altered their expression across the 5 time points (13-20 days), of which 36 proteins involved in the head organogenesis were upregulated during early stages (13-17 days). However, 22 proteins involved in regulating the pupae head neuron and gland development were upregulated at later developmental stages (19-20 days). Also, the functional enrichment analysis further suggests that proteins related to carbohydrate metabolism and energy production, development, cytoskeleton and protein folding were highly involved in the generation of organs and development of honeybee pupal head. Furthermore, the constructed protein interaction network predicted 33 proteins acting as key nodes of honeybee pupae head growth of which 9 and 4 proteins were validated at gene and protein levels, respectively. In this study, we uncovered potential protein species involved in the formation of honeybee pupae head development along with their specific temporal requirements. This first proteomic result allows deeper understanding of the proteome profile changes during honeybee pupae head development and provides important potential candidate proteins for future reverse genetic research on honeybee pupae head development to improve the performance of related organs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号