首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of a marine-isolated mercury-resistant <Emphasis Type="Italic">Pseudomonas putida</Emphasis> strain SP1 and its potential application in marine mercury reduction
Authors:Weiwei?Zhang  Email author" target="_blank">Lingxin?ChenEmail author  Dongyan?Liu
Institution:(1) Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China;(2) Key Laboratory of Coastal Zone Environmental Processes, Chinese Academy of Sciences; Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China;
Abstract:The Pseudomonas putida strain SP1 was isolated from marine environment and was found to be resistant to 280 μM HgCl2. SP1 was also highly resistant to other metals, including CdCl2, CoCl2, CrCl3, CuCl2, PbCl2, and ZnSO4, and the antibiotics ampicillin (Ap), kanamycin (Kn), chloramphenicol (Cm), and tetracycline (Tc). mer operon, possessed by most mercury-resistant bacteria, and other diverse types of resistant determinants were all located on the bacterial chromosome. Cold vapor atomic absorption spectrometry and a volatilization test indicated that the isolated P. putida SP1 was able to volatilize almost 100% of the total mercury it was exposed to and could potentially be used for bioremediation in marine environments. The optimal pH for the growth of P. putida SP1 in the presence of HgCl2 and the removal of HgCl2 by P. putida SP1 was between 8.0 and 9.0, whereas the optimal pH for the expression of merA, the mercuric reductase enzyme in mer operon that reduces reactive Hg2+ to volatile and relatively inert monoatomic Hg0 vapor, was around 5.0. LD50 of P. putida SP1 to flounder and turbot was 1.5 × 109 CFU. Biofilm developed by P. putida SP1 was 1- to 3-fold lower than biofilm developed by an aquatic pathogen Pseudomonas fluorescens TSS. The results of this study indicate that P. putida SP1 is a low virulence strain that can potentially be applied in the bioremediation of HgCl2 contamination over a broad range of pH.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号