首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Atomistic simulations of materials for optical chemical sensors: DFT-D calculations of molecular interactions between gas-phase analyte molecules and simple substrate models
Authors:Andrey A Safonov  Elena A Rykova  Alexander A Bagaturyants  Vyacheslav A Sazhnikov  Michael V Alfimov
Institution:(1) Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, b. 1, Moscow, 119421, Russia;
Abstract:The structures of complexes of some small molecules (formaldehyde, acetaldehyde, ammonia, methylamine, methanol, ethanol, acetone, benzene, acetonitrile, ethyl acetate, chloroform, and tetrahydrofuran, considered as possible analytes) with ethylbenzene and silanol (C6H5C2H5 and SiH3OH, considered as models of polystyrene and silica gel substrates) and with acridine (C13H9N, considered as a model of an indicator dye molecule of the acridine series) and the corresponding interaction energies have been calculated using the DFT-D approximation. The PBE exchange-correlation potential was used in the calculations. The structures of complexes between the analyte and the substrate were determined by optimizing their ground-state geometry using the SVP split-valence double-zeta plus polarization basis set. The complex formation energies were refined by single-point calculations at the calculated equilibrium geometries using the sufficiently large triple-zeta TZVPP basis set. The calculated interaction energies are used to assess the possibility of using dyes of the acridine series adsorbed on a polystyrene or silica substrate for detecting the small molecules listed above.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号