首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modeling C and N transport to developing soybean fruits
Authors:Layzell D B  Larue T A
Institution:Boyce Thompson Institute for Plant Research, Ithaca, New York 14853.
Abstract:Xylem sap and phloem exudates from detached leaves and fruit tips were collected and analyzed during early pod-fill in nodulated soybeans (Glycine max (L.) Merr. cv Wilkin) grown without (−N) and with (+N) NH4NO3. Ureides were the predominant from (91%) of N transported in the xylem of −N plants, while amides (45%) and nitrate (23%) accounted for most of the N in the xylem of +N plants. Amino acids (44%) and ureides (36%) were the major N forms exported in phloem from leaves in −N plants, but amides (63%) were most important in +N plants. Based on the composition of fruit tip phloem, ureides (55% and 33%) and amides (26% and 47%) accounted for the majority of N imported by fruits of −N and +N plants, respectively.

C:N weight ratios were lowest in xylem exudate (1.37 and 1.32), highest in petiole phloem (24.5 and 26.0), and intermediate in fruit tip exudate (12.6 and 12.1) for the −N and +N treatments, respectively. The ratios were combined with data on fruit growth and respiration to construct a model of C and N transport to developing fruits. The model indicates xylem to phloem transfer provides 35% to 52% of fruit N. Results suggest the phloem entering fruits oversupplies their N requirement so that 13% of the N imported is exported from fruit in the xylem.

Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号