首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An anion channel in guinea pig gallbladder epithelial cells is highly permeable to HCO(-)(3)
Authors:Meyer G  Garavaglia M L  Bazzini C  Bottà G
Institution:Dipartimento di Fisiologia e Biochimica Generali, Sezione di Fisiologia Generale, Università degli Studi di Milano, Via Celoria 26, Milan, I-20133, Italy. Giuliano.meyer@unimi.it
Abstract:In guinea pig gallbladder epithelium, a secretion of fluid, secondary to an electrogenic secretion of Cl(-) and HCO(-)(3), is elicited in the presence of a high intracellular concentration of adenosine 3'-5'-cyclic monophosphate (cAMP). The aim of this study was to analyze the effects of secretagogues on the activity of anionic channels in isolated epithelial cells using the patch-clamp technique and measuring the electrical potential difference of the cellular membrane (pd(cm)). In cell-attached configuration, with the microelectrode filled with a solution of N-methylglucamine-Cl, or in inside-out configuration (symmetrical solution), it was possible to demonstrate the presence of an 18-pS Cl(-) channel with linear current/voltage (I/V) relationship and voltage independence; this channel is not activated by cAMP (cell-attached configuration). In inside-out configuration (symmetrical solution), another anionic channel with a conductance of 2.8 pS, voltage independence, and a linear I/V relationship was also identified. This channel was stimulated by cAMP (cell-attached configuration) and by PKA + ATP + cAMP (inside-out configuration). The channel was inhibited by NPPB (10(-5) M), but not by other anionic inhibitors. Measurements of the pd(cm) value suggested that in isolated cells, as in whole tissue, cAMP activates conductance for both Cl(-) and HCO(-)(3). The selectivity of the channel was gluconate < SO(2-)(4) < Cl(-) < Br(-) < I(-) < HCO(-)(3) < SCN(-) and the P(HCO(3))/P(Cl) was 2.6. Some features of the channel resemble those of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and RT-PCR performed on mRNA from isolated epithelial cells detected the presence of a CFTR homologue mRNA. The results obtained indicate that this channel is responsible for the HCO(-)(3) conductance activated by cAMP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号