首页 | 本学科首页   官方微博 | 高级检索  
     


Quality control of microbiota metagenomics by k-mer analysis
Authors:Florian Plaza Onate  Jean-Michel Batto  Catherine Juste  Jehane Fadlallah  Cyrielle Fougeroux  Doriane Gouas  Nicolas Pons  Sean Kennedy  Florence Levenez  Joel Dore  S Dusko Ehrlich  Guy Gorochov  Martin Larsen
Abstract:

Background

The biological and clinical consequences of the tight interactions between host and microbiota are rapidly being unraveled by next generation sequencing technologies and sophisticated bioinformatics, also referred to as microbiota metagenomics. The recent success of metagenomics has created a demand to rapidly apply the technology to large case–control cohort studies and to studies of microbiota from various habitats, including habitats relatively poor in microbes. It is therefore of foremost importance to enable a robust and rapid quality assessment of metagenomic data from samples that challenge present technological limits (sample numbers and size). Here we demonstrate that the distribution of overlapping k-mers of metagenome sequence data predicts sequence quality as defined by gene distribution and efficiency of sequence mapping to a reference gene catalogue.

Results

We used serial dilutions of gut microbiota metagenomic datasets to generate well-defined high to low quality metagenomes. We also analyzed a collection of 52 microbiota-derived metagenomes. We demonstrate that k-mer distributions of metagenomic sequence data identify sequence contaminations, such as sequences derived from “empty” ligation products. Of note, k-mer distributions were also able to predict the frequency of sequences mapping to a reference gene catalogue not only for the well-defined serial dilution datasets, but also for 52 human gut microbiota derived metagenomic datasets.

Conclusions

We propose that k-mer analysis of raw metagenome sequence reads should be implemented as a first quality assessment prior to more extensive bioinformatics analysis, such as sequence filtering and gene mapping. With the rising demand for metagenomic analysis of microbiota it is crucial to provide tools for rapid and efficient decision making. This will eventually lead to a faster turn-around time, improved analytical quality including sample quality metrics and a significant cost reduction. Finally, improved quality assessment will have a major impact on the robustness of biological and clinical conclusions drawn from metagenomic studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1406-7) contains supplementary material, which is available to authorized users.
Keywords:Metagenomics   Next generation sequencing   Quality control   Sampling bias   Sample size limits
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号