首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts: CHANNELING OF ACETYL-CoA FROM PYRUVATE DEHYDROGENASE TO CARNITINE ACETYLTRANSFERASE*
Authors:Qingling Li  Shuang Deng  Rafael A. Ibarra  Vernon E. Anderson  Henri Brunengraber  Guo-Fang Zhang
Affiliation:From the Departments of Nutrition and ;§Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
Abstract:We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.
Keywords:Acetoacetate   Acetyltransferase   Cell Compartmentalization   Glycolysis   Metabolomics   Acetyl Coenzyme A (Acetyl-CoA)   Acetylcarnitine   Citric Acid Cycle   Metabolic Channeling   Substrate Cycling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号