首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope
Authors:Goodchild Rose E  Kim Connie Eunji  Dauer William T
Institution:Department of Neurology, Columbia University, New York, New York 10032, USA.
Abstract:An enigmatic feature of many genetic diseases is that mutations in widely expressed genes cause tissue-specific illness. One example is DYT1 dystonia, a neurodevelopmental disease caused by an in-frame deletion (Deltagag) in the gene encoding torsinA. Here we show that neurons from both torsinA null (Tor1a(-/-)) and homozygous disease mutant "knockin" mice (Tor1a(Deltagag/Deltagag)) contain severely abnormal nuclear membranes, although non-neuronal cell types appear normal. These membrane abnormalities develop in postmigratory embryonic neurons and subsequently worsen with further neuronal maturation, a finding evocative of the developmental dependence of DYT1 dystonia. These observations demonstrate that neurons have a unique requirement for nuclear envelope localized torsinA function and suggest that loss of this activity is a key molecular event in the pathogenesis of DYT1 dystonia.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号