首页 | 本学科首页   官方微博 | 高级检索  
     


Pharmacological activation of a novel p53-dependent S-phase checkpoint involving CHK-1
Authors:A Ahmed   J Yang   A Maya-Mendoza   D A Jackson   M Ashcroft
Affiliation:1Department of Metabolism and Experimental Therapeutics, Division of Medicine, Centre for Cell Signalling and Molecular Genetics, University College London, Rayne Building, 5 University Street, London WC1E 6JJ, UK;2Faculty of Life Sciences, University of Manchester, MIB, Manchester, M1 7DN, UK
Abstract:We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1.
Keywords:p53   hypoxia   HIF-1α   DNA damage   CHK-1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号