首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reserpine sensitivity of catecholamine metabolism in murine neuroblastoma clone N1E-115.
Authors:X O Breakefield
Abstract:—Neuroblastoma cells of clone NIE-115, originally obtained from the murine tumor C1300, resemble normal noradrenergic neurons in that they have high levels of tyrosine 3-monooxygenase (EC 1.14.16.2; l -tyrosine, tetrahydropteridine: oxygen oxidoreductase (3-hydroxylating)) and dopamine β-monooxygenase (EC 1.14.17.1; 3,4-dihydroxyphenylethylamine, ascorbate: oxygen oxidoreductase (β-hydroxylating)) activities, dense core versicles (100–300 nm in dia), long neurites and excitable membranes. These studies show that reserpine, a blocker of vesicular uptake in noradrenergic neurons, inhibits the accumulation and storage of catecholamines, as well as the conversion of dopamine to NE in neuroblastoma cells. Differentiated monolayer cultures took up 3H]dopamine 10−4] at a rate of 37 pmol/min per mg protein. Reserpine 5 × 10−5m ] did not affect the initial rate of uptake, but reduced the extent of uptake at saturation by 60%. Chromatographic examination of cell extracts showed that dopamine was converted to NE in control cultures, but not in reserpine treated cultures. Cells labelled with 3H]dopamine for 60 min and then exposed to release buffer without dopamine for an additional 60 min, retained approximately 40% of the label, 10% as dopamine and 30% as NE. Thirty-five per cent of the radioactivity retained was found, after homogenization and high speed centrifugation, to be associated with a particulate, subcellular fraction. Reserpine, present during release incubations, also reduced the ability of cells to store catecholamines. These results show that N1E-115 cells synthesize and store NE by reactions similar to those in normal noradrenergic neurons.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号