首页 | 本学科首页   官方微博 | 高级检索  
   检索      


MocA Is a Specific Cytidylyltransferase Involved in Molybdopterin Cytosine Dinucleotide Biosynthesis in Escherichia coli
Authors:Meina Neumann  Gerd Mittelst?dt  Farida Seduk  Chantal Iobbi-Nivol  Silke Leimkühler
Institution:From the Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany and ;§Laboratoire de Chimie Bactérienne, IFR88, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
Abstract:We have purified and characterized a specific CTP:molybdopterin cytidylyltransferase for the biosynthesis of the molybdopterin (MPT) cytosine dinucleotide (MCD) cofactor in Escherichia coli. The protein, named MocA, shows 22% amino acid sequence identity to E. coli MobA, the specific GTP:molybdopterin guanylyltransferase for molybdopterin guanine dinucleotide biosynthesis. MocA is essential for the activity of the MCD-containing enzymes aldehyde oxidoreductase YagTSR and the xanthine dehydrogenases XdhABC and XdhD. Using a fully defined in vitro assay, we showed that MocA, Mo-MPT, CTP, and MgCl2 are required and sufficient for MCD biosynthesis in vitro. The activity of MocA is specific for CTP; other nucleotides such as ATP and GTP were not utilized. In the defined in vitro system a turnover number of 0.37 ± 0.01 min?1 was obtained. A 1:1 binding ratio of MocA to Mo-MPT and CTP was determined to monomeric MocA with dissociation constants of 0.23 ± 0.02 μm for CTP and 1.17 ± 0.18 μm for Mo-MPT. We showed that MocA was also able to convert MPT to MCD in the absence of molybdate, however, with only one catalytic turnover. The addition of molybdate after one turnover gave rise to a higher MCD production, revealing that MCD remains bound to MocA in the absence of molybdate. This work presents the first characterization of a specific enzyme involved in MCD biosynthesis in bacteria.The biosynthesis of the molybdenum cofactor (Moco)2 is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. In Moco the molybdenum atom is coordinated to the dithiolene group of the 6-alkyl side chain of a pterin called molybdopterin (MPT). Moco biosynthesis has been extensively studied in Escherichia coli by using a combination of biochemical, genetic, and structural approaches (1, 2). The biosynthesis of Moco has been divided into four major steps in Escherichia coli: (i) formation of precursor Z (3, 4), (ii) formation of MPT from precursor Z (5, 6), (iii) insertion of molybdenum to form Moco via an adenylylated MPT intermediate (79), and (iv) additional modification by covalent addition of GMP to the C4′ phosphate of MPT via a pyrophosphate bond, forming the molybdopterin guanine dinucleotide (MGD) cofactor (10, 11). In E. coli, GMP attachment to Moco is catalyzed by the MobA and MobB proteins (12). Although MobA was shown to be essential for this reaction and acts as a GTP:molybdopterin guanylyltransferase (11), the role of MobB still remains uncertain. From the crystal structure, it was postulated that MobB is an adapter protein acting in concert with MobA to achieve the efficient biosynthesis and utilization of MGD (13). Although MobA was shown to bind MPT, Mo-MPT, and MGD (14), investigations of in vitro studies using purified MobA, MgCl2, GTP, and either MPT or Mo-MPT showed that MGD was only formed by MobA when the molybdenum atom was already ligated to MPT (15). The formation of bis-MGD is one of the most enigmatic steps in Moco biosynthesis in E. coli. It is still not known whether the two MGD molecules assemble on MobA or instead after the insertion into the respective target proteins like DMSO reductase or nitrate reductase A. In other bacteria like Arthrobacter nicotinovorans, Veillonella atypica, or Oligotropha carboxidovorans, Moco can be further modified by the attachment of CMP to the C4′ phosphate of MPT forming the molybdopterin cytosine dinucleotide (MCD) cofactor (1618). A specific enzyme catalyzing the CTP:molybdopterin cytidylyltransferase reaction has not been identified so far. For A. nicotinovorans nicotine dehydrogenase and ketone dehydrogenase the involvement of a MobA homologous protein for MCD formation was reported (16); however, it was not shown whether the MobA protein was specifically required for MCD biosynthesis or whether it was also involved in the biosynthesis of MGD in this bacterium. Furthermore, enzymes binding MCD in bacteria usually contain an additional modification at the molybdenum site of Moco, where a terminal oxo-ligand is exchanged by a sulfido ligand, forming sulfurated or mono-oxo Moco (19). Recently, the MCD-containing protein YagTSR was identified and characterized in E. coli as a periplasmic aldehyde oxidoreductase which oxidizes a broad spectrum of aldehydes using ferredoxin as electron acceptor (20). It was shown that for the production of an active form of YagTSR, the YagQ protein was required, which is believed to be a MCD binding chaperone involved in the sulfuration of the Mo site and the insertion of sulfurated MCD into apoYagTSR (20). The majority of the other molybdoenzymes in E. coli were shown to bind the bis-MGD form of Moco, in which molybdenum is coordinated to two MGD moieties. The other exception is the YedY protein, being so far the only E. coli protein binding the Mo-MPT form of Moco (21). However, the physiological role of this protein still remains unclear.Investigations on YagTSR showed that MCD was inserted into YagR independent of the function of MobA, indicating that a so-far unidentified protein is involved in MCD biosynthesis in E. coli (20). Here, we report the identification of the specific CTP:molybdopterin cytidylyltransferase, which we named MocA (formerly named YgfJ by the E. coli nomenclature of genes with unknown function). Purified MocA was shown to catalyze the formation of MCD from Mo-MPT and CTP in vitro. Additionally, we report that a disruption in the mocA gene impaired MCD biosynthesis in E. coli, resulting in an inactive YagTSR protein devoid of Moco.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号