首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glucose-induced Ubiquitylation and Endocytosis of the Yeast Jen1 Transporter: ROLE OF LYSINE 63-LINKED UBIQUITIN CHAINS*
Authors:Sandra Paiva  Neide Vieira  Isabelle Nondier  Rosine Haguenauer-Tsapis  Margarida Casal  and Dani??le Urban-Grimal
Institution:From the Department of Biology, Molecular and Environmental Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal and ;the §Institut Jacques Monod, CNRS-Université Paris Diderot-Paris 7, 75013 Paris, France
Abstract:Protein ubiquitylation is essential for many events linked to intracellular protein trafficking. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitylation remain largely unknown. Plasma membrane transporters are subjected to tightly regulated endocytosis, and ubiquitylation is a key signal at several stages of the endocytic pathway. The yeast monocarboxylate transporter Jen1 displays glucose-regulated endocytosis. We show here that casein kinase 1-dependent phosphorylation and HECT-ubiquitin ligase Rsp5-dependent ubiquitylation are required for Jen1 endocytosis. Ubiquitylation and endocytosis of Jen1 are induced within minutes in response to glucose addition. Jen1 is modified at the cell surface by oligo-ubiquitylation with ubiquitin-Lys63 linked chain(s), and Jen1-Lys338 is one of the target residues. Ubiquitin-Lys63-linked chain(s) are also required directly or indirectly to sort Jen1 into multivesicular bodies. Jen1 is one of the few examples for which ubiquitin-Lys63-linked chain(s) was shown to be required for correct trafficking at two stages of endocytosis: endocytic internalization and sorting at multivesicular bodies.Ubiquitylation is one of the most prevalent protein post-translational modifications in eukaryotes. In addition to its role in promoting proteasomal degradation of target proteins, ubiquitylation has been shown to regulate multiple processes, including DNA repair, signaling, and intracellular trafficking. Ubiquitylation serves as a key signal mediating the internalization of plasma membrane receptors and transporters, followed by their intracellular transport and subsequent recycling or lysosomal/vacuolar degradation (1, 2). In Saccharomyces cerevisiae, transporters usually display both constitutive and accelerated endocytosis regulated by factors such as excess substrate, changes in nutrient availability, and stress conditions. Ubiquitylation of these cell surface proteins acts as a signal triggering their internalization (1). A single essential E34 ubiquitin ligase, Rsp5, has been implicated in the internalization of most, if not all, endocytosed proteins (3). Rsp5 is the unique member in S. cerevisiae of the HECT (homologous to E6AP COOH terminus)-ubiquitin ligases of the Nedd4/Rsp5 family (4). In a few cases, Rsp5-dependent cell surface ubiquitylation was shown to involve PY-containing adapters that bind to Rsp5 (57). Rsp5-mediated ubiquitylation is also required for sorting into multivesicular bodies (MVBs) of endosomal membrane proteins that come from either the plasma membrane (through endocytosis) or the Golgi (through vacuolar protein sorting (VPS) pathway) (8). Although much progress has been made in elucidating the mechanistic basis of various steps in protein trafficking, the precise requirement for a specific type and length of Ub chains at various stages of the endocytic pathway remains to be addressed.The ubiquitin profile needed for proper internalization has been established for some yeast membrane proteins (1). The α-factor receptor Ste2 was described as undergoing monoubiquitylation on several lysines (multimonoubiquitylation). The a-factor receptor, Ste3p; the general transporter of amino acids, Gap1; the zinc transporter, Ztr1; and the uracil transporter, Fur4, have been shown to be modified by short chains of two to three ubiquitins, each attached to one, two, or more target lysine residues (oligo-ubiquitylation). Among them, Fur4 and Gap1 were the only transporters demonstrated to undergo plasma membrane oligo-ubiquitylation with ubiquitin residues linked via ubiquitin-Lys63 (9, 10). In addition, the two siderophore transporters Arn1 and Sit1 were also shown to undergo Lys63-linked cell surface ubiquitylation (11, 12). Whether these four transporters are representative of a larger class of plasma membrane substrates remains to be determined. Little is known about the type of ubiquitylation involved and/or required for sorting to MVBs. Some MVB cargoes appear to undergo monoubiquitylation (8), whereas Sna3, an MVB cargo of unknown function, undergoes Lys63-linked ubiquitylation (13). Lys63-linked ubiquitin chains were also recently reported to be required, directly or indirectly, for MVB sorting of the siderophore transporter, Sit1, when trafficking through the VPS pathway in the absence of its external substrate (11). In agreement with the possibility that additional membrane-bound proteins might undergo Lys63-linked ubiquitylation, a proteomic study aiming to uncover ubiquitylated yeast proteins showed that Lys63-ubiquitin chains are far more abundant than previously thought (14).The transport of monocarboxylates, such as lactate and pyruvate, as well as ketone bodies across the plasma membrane is essential for the metabolism of cells of various organisms. A family of monocarboxylate transporters has been reported that includes mainly mammalian members (15). In S. cerevisiae, two monocarboxylate-proton symporters have been described, Jen1 and Ady2 (16, 17). These transporters exhibit differences in their mechanisms of regulation and specificity. Jen1 is a lactate-pyruvate-acetate-propionate transporter induced in lactic or pyruvic acid-grown cells (18). Ady2, which accepts acetate, propionate, or formate, is present in cells grown in non-fermentable carbon sources (19). Jen1 has unique regulatory characteristics and has been extensively studied. It was the first secondary porter of S. cerevisiae characterized by heterologous expression in Pichia pastoris at both the cell and the membrane vesicle levels (20). The addition of glucose to lactic acid-grown cells very rapidly triggers loss of Jen1 activity and repression of JEN1 gene expression (21, 22). Newly synthesized Jen1-GFP fusion protein is sorted to the plasma membrane in an active and stable form, and loss of Jen1-GFP activity upon glucose addition is the result of its endocytosis followed by vacuolar degradation (23). Data from large scale analyses based on mass spectrometry approaches led to the detection of two sites of ubiquitylation for Jen1, one located in the N terminus of the protein and the second in the central loop (14), and several sites of phosphorylation in the N terminus, central loop, and C terminus of the protein (14, 24). In the present study, we aimed at further characterizing the internalization step of endocytosis of the transporter Jen1 and the potential role of the phosphorylation and ubiquitylation events required for its correct endocytic trafficking.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号