首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterogeneous Nuclear Ribonucleoprotein K Represses the Production of Pro-apoptotic Bcl-xS Splice Isoform
Authors:Timoth??e Revil  Jordan Pelletier  Johanne Toutant  Alexandre Cloutier  and Benoit Chabot
Institution:From the RNA/RNP Group, Département de Microbiologie et d''Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
Abstract:The Bcl-x pre-mRNA is alternatively spliced to produce the anti-apoptotic Bcl-xL and the pro-apoptotic Bcl-xS isoforms. By performing deletion mutagenesis on a human Bcl-x minigene, we have identified a novel exonic element that controls the use of the 5′ splice site of Bcl-xS. The proximal portion of this element acts as a repressor and is located downstream of an enhancer. Further mutational analysis provided a detailed topological map of the regulatory activities revealing a sharp transition between enhancer and repressor sequences. Portions of the enhancer can function when transplanted in another alternative splicing unit. Chromatography and immunoprecipitation assays indicate that the silencer element interacts with heterogeneous ribonucleoprotein particle (hnRNP) K, consistent with the presence of putative high affinity sites for this protein. Finally, down-regulation of hnRNP K by RNA interference enhanced splicing to Bcl-xS, an effect seen only when the sequences bound by hnRNP K are present. Our results therefore document a clear role for hnRNP K in preventing the production of the pro-apoptotic Bcl-xS splice isoform.Alternative splicing is a major mechanism used to augment the number of proteins encoded by the genome. It is estimated that as many as 97% of multiple exon pre-mRNAs undergo alternative splicing (1, 2). Disruption of alternative splicing by mutating important regulatory sequences or by altering the expression or activity of proteins controlling splice site selection has been linked with different diseases, including cancer (37). Apoptosis is an important and complex cellular program involved in development and differentiation in higher organisms (8, 9). However, its aberrant control often contributes to cancer development and the resistance of cancer cells to drug therapy (1013).Genes implicated in the apoptotic pathway are alternatively spliced often to produce protein isoforms with distinct or even antagonistic activities (14, 15). A good example is the apoptotic regulator Bcl-x, which is alternatively spliced to produce two major isoforms, the anti-apoptotic Bcl-xL protein and the shorter pro-apoptotic Bcl-xS isoform (16). This alternative splicing decision involves a competition between two 5′ splice sites; the use of the downstream site creates Bcl-xL, and the use of the upstream one produces Bcl-xS (Fig. 1A). Bcl-xL is always the predominant form in cancer cells, and overexpressing it can confer resistance to chemotherapeutic agents (1722). On the other hand, overexpression of the pro-apoptotic Bcl-xS isoform enhances sensitivity to the topoisomerase inhibitor etoposide and to taxol in a breast cancer cell line, while triggering apoptosis in melanoma cell lines (23, 24). Using antisense technologies to improve the production of the Bcl-xS splice variant can also induce apoptosis in cancer cells (2527).Open in a separate windowFIGURE 1.A, alternative splicing of Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS. B, regulation of Bcl-x alternative splicing. The enhancer elements are shown as white boxes, and the repressors are black. The pointed and flat arrows indicate positive and negative regulation, respectively. Protein kinase C inhibition relieves repression caused by the SB1 element on the Bcl-xS splice site (36). The repressor elements CRCE1, recognized by SAP155, and CRCE2 mediate the production of Bcl-xS by ceramide as when induced by gemcitabine in A549 cells (38, 39). hnRNP F/H binds to the B2G element to enhance the production of the Bcl-xS isoform (41). RBM25, through an element located upstream of the Bcl-xS splice site, can also augment its use (44). A large intronic region (IRE) mediates the Bcl-xL increase caused by interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and 12-O-tetradecanoylphorbol-13-acetate (TPA) (35). Finally, the B3 region also enhances Bcl-xL formation through the binding of SRp30c to AM2 and ML2 and the U1 snRNP to two cryptic 5′ splice sites (42).Alternative splicing is regulated by different proteins bound to sequence elements near splice sites. A variety of mechanisms is used to achieve regulation. Some splicing factors act by recruiting or inhibiting the binding of different components of the spliceosome. Others may change the conformation of the pre-mRNA to mask a splice site or to bring a pair of splice sites into closer proximity (28, 29).Although individual factors can have a strong and specific effect on splicing decisions, alternative splicing often relies on a combination of factors to determine the appropriate levels of isoforms. The implication of multiple proteins likely provides additional levels of regulation that helps attuned splicing control to a variety of stresses, environmental cues, and growth conditions. In several cases, the interaction of regulatory factors can be antagonistic. For example, in the Drosophila male-specific-lethal-2 (msl-2) pre-mRNA, recruitment of SXL to a uridine-rich region interferes with the binding of TIA-1 that is necessary for efficient U1 snRNP2 recruitment at the 5′ splice site (30). On the same pre-mRNA, SXL also diminishes U2AF recognition of the polypyrimidine tract at the 3′ splice site. TIA proteins bound to a U-rich element on the avian myosin phosphatase targeting subunit-1 (MYPT1) pre-mRNA repress the binding of PTB (31). PTB can also reduce the recruitment of ETR-3 to intronic elements near exon 5 of cardiac troponin T (32). In neurons, the binding of PTB to the introns surrounding the N1 exon of c-src is antagonized by nPTB protein, promoting exon inclusion. On the hnRNP A1 pre-mRNA, PTB diminishes the binding of SRp30c to the intronic CE9 element, reducing the inhibition by this protein on the use of the downstream 3′ splice site (33). SC35 and hnRNP A1 have partially overlapping binding sites on the human immunodeficiency virus 1 (HIV-1) tat exon 2. Preferential binding of SC35 enhances the inclusion of the exon, whereas hnRNP A1, by reducing SC35 binding, increases exclusion (34). Thus, the competition provided by an overlapping or a closely abutting pair of enhancer/ silencer represents a simple and frequent mechanism of splicing control.The regulation of Bcl-x alternative splicing has received some attention in recent years leading to the discovery of several cis-acting elements and a few trans-acting control factors (Fig. 1B). Intronic regions downstream from the Bcl-xL 5′ splice site have been implicated as mediating signals from cytokines such as interleukin-6 and granulocyte-macrophage colony-stimulating factor (35). In addition, we have reported that an element located 187 nt upstream of the Bcl-xS splice site mediates a protein kinase C-dependent signal that represses splicing to the Bcl-xS donor site (36). On the other hand, ceramide enhances the use of the Bcl-xS 5′ splice site by lifting the repression mediated by two other elements (37, 38). The activity of one of these apparently involves SAP155 (39). The RNA-binding protein Sam68, under the control of the tyrosine kinase Fyn, can also increase the production of Bcl-xS in cooperation with hnRNP A1 (40), and this effect is inhibited by overexpression of ASF/SF2. The Bcl-x sequences bound by the above factors remain to be identified. We also uncovered enhancer elements for Bcl-xS and Bcl-xL. hnRNP F and H bind downstream of the Bcl-xS 5′ splice site to stimulate splicing to that site (41). Enhancement of Bcl-xL is conferred by SRp30c, which binds upstream of the 5′ splice site to antagonize the repressor activity of pseudo 5′ splice sites (42). Recently, the SR protein SC35 was shown to increase the production of Bcl-xS (43). Finally, the binding of RBM25 to a sequence element upstream of the Bcl-xS 5′ splice site stimulated its use, possibly by recruiting U1 snRNP through its interaction with the U1-associated protein hLuc7A (44). Thus, the region located between the two competing 5′ splice sites of Bcl-x is densely populated by splicing control elements.In this study, we have pursued our characterization of Bcl-x splicing control by examining the contribution of sequences directly upstream of the Bcl-xS donor site. Our mutational approach identified a region containing flanking enhancer and silencer activities. The activity of the repressor portion is mediated by hnRNP K, which makes this protein an anti-apoptotic regulator.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号