首页 | 本学科首页   官方微博 | 高级检索  
     


Cholesterol-rich Fluid Membranes Solubilize Ceramide Domains: IMPLICATIONS FOR THE STRUCTURE AND DYNAMICS OF MAMMALIAN INTRACELLULAR AND PLASMA MEMBRANES*
Authors:Bruno M. Castro   Liana C. Silva   Alexander Fedorov   Rodrigo F. M. de Almeida     Manuel Prieto
Affiliation:From the Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Complexo I, Avenida Rovisco Pais, 1049-001 Lisbon and ;the §Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
Abstract:A uniquely sensitive method for ceramide domain detection allowed us to study in detail cholesterol-ceramide interactions in lipid bilayers with low (physiological) ceramide concentrations, ranging from low or no cholesterol (a situation similar to intracellular membranes, such as endoplasmic reticulum) to high cholesterol (similar to mammalian plasma membrane). Diverse fluorescence spectroscopy and microscopy experiments were conducted showing that for low cholesterol amounts ceramide segregates into gel domains that disappear upon increasing cholesterol levels. This was observed in different raft (sphingomyelin/cholesterol-containing) and non-raft (sphingomyelin-absent) membranes, i.e. mimicking different types of cell membranes. Cholesterol-ceramide interactions have been described mainly as raft sphingomyelin-dependent. Here sphingomyelin independence is demonstrated. In addition, ceramide-rich domains re-appear when either cholesterol is converted by cholesterol oxidase to cholestenone or the temperature is decreased. Ceramide is more soluble in cholesterol-rich fluid membranes than in cholesterol-poor ones, thereby increasing the chemical potential of cholesterol. Ceramide solubility depends on the average gel-fluid transition temperature of the remaining membrane lipids. The inability of cholestenone-rich membranes to dissolve ceramide gel domains shows that the cholesterol ordering and packing properties are fundamental to the mixing process. We also show that the solubility of cholesterol in ceramide domains is low. The results are rationalized by a ternary phospholipid/ceramide/cholesterol phase diagram, providing the framework for the better understanding of biochemical phenomena modulated by cholesterol-ceramide interactions such as cholesterol oxidase activity, lipoprotein metabolism, and lipid targeting in cancer therapy. It also suggests that the lipid compositions of different organelles are such that ceramide gel domains are not formed unless a stress or pathological situation occurs.Cholesterol (Chol)3 is the most abundant sterol in mammalian plasma membrane and has unique biophysical properties (1, 2). Chol interacts with the high melting temperature (Tm) sphingolipids (SL) in the membrane, leading to the formation of SL/Chol-enriched microdomains (so-called lipid rafts). These domains are in a more ordered state (usually referred to as liquid-ordered (lo) phase) than the bulk membrane (liquid-disordered phase (ld)) (3, 4). Ceramide (Cer) is an SL formed in stress situations either from sphingomyelin (SM) in rafts or synthesized de novo by serine palmitoyltransferase and ceramide synthase. Both of these processes can be induced by diverse stimuli (5). Cer-induced membrane alterations (e.g. raft fusion into large signaling platforms (6)) were proposed to be the mechanism by which this lipid mediates diverse cellular processes, namely apoptosis (710). Cer presents an unusually small polar headgroup and in general very high gel-fluid Tm (e.g. for palmitoyl-Cer (PCer) it is ∼90 °C) (11). Membrane Cer levels are usually very low, although in cells undergoing apoptosis it can reach values up to 12 mol % total lipid (7), a percentage that in model membranes leads to Cer-rich gel domain formation (1217). It was suggested that the formation of these domains might also be involved in Cer biological action (8, 18, 19).However, Cer effects on membrane properties are extremely dependent on membrane lipid composition, especially on Chol amounts (13, 2023). For instance, in raft-forming model membranes (i.e. ternary mixtures of phosphocholines (PC), sphingomyelin (SM), and Chol), Cer-rich gel domains are formed at low but not at high Chol content (23). This result was explained by the competition between the two small headgroup molecules, Chol and Cer, for the bulkier headgroup, SM, to minimize acyl chain exposure to water. In fact, it is suggested that Cer selectively displaces Chol molecules from rafts, both in model (2427) and in cell membranes (28, 29). However, a recent study showed that Cer-generated from SM hydrolysis leads to the formation of gel domains in these ternary mixtures only when Chol levels are low, suggesting that even for SM-depleted mixtures Chol is still able to modulate Cer effects (30). Therefore, to fully disclose the conditions that lead to the activation/regulation of Cer-mediated processes, further knowledge about Cer effects on membrane properties and their modulation by Chol is required.It is important to clarify the relation between Cer threshold for gel formation, cholesterol amount, and the properties of the remaining lipids (namely their propensity to form gel phases, which depends mainly on their gel-fluid transition temperature). This is because of the fact that each organelle membrane has its own specific composition. For example, there is a gradient of cholesterol concentration from the endoplasmic reticulum (ER) to the plasma membrane (PM) (31). In addition, there is a close relation between intracellular Cer levels, Ca2+ release from the ER, and Cer-induced permeability increase of the mitochondrial outer membrane (but not the inner membrane) (32, 33).The application of a uniquely sensitive method for Cer-rich gel detection allowed us to study for the first time Chol-Cer interactions in detail for high Chol and low Cer concentrations, i.e. a composition similar to mammalian plasma membranes. In addition, low Chol membranes were also studied. Our results clearly show that in a fluid matrix of representative mammalian membranes lipids, Cer-rich gel domains are destroyed by high amounts of Chol in the absence of SM and even in the absence of an lo phase. We show that this outcome is a consequence of the higher solubility of Cer in Chol-rich membranes than in poor ones, the low solubility of Chol in Cer domains, and that it depends on the average Tm of the remaining lipids. These solubility differences offer a unified rationale for all Cer-Chol biophysical studies that can be translated into a ternary phase diagram, and the biological implications of the results are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号