首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorylation-independent Regulation of Metabotropic Glutamate Receptor 5 Desensitization and Internalization by G Protein-coupled Receptor Kinase 2 in Neurons
Authors:Fabiola M. Ribeiro   Lucimar T. Ferreira   Maryse Paquet   Tamara Cregan   Qingming Ding   Robert Gros     Stephen S. G. Ferguson
Affiliation:From the Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, ;the §Vascular Biology Research Group, Robarts Research Institute, and ;the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada
Abstract:The uncoupling of metabotropic glutamate receptors (mGluRs) from heterotrimeric G proteins represents an essential feedback mechanism that protects neurons against receptor overstimulation that may ultimately result in damage. The desensitization of mGluR signaling is mediated by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). Unlike mGluR1, the attenuation of mGluR5 signaling in HEK 293 cells is reported to be mediated by a phosphorylation-dependent mechanism. However, the mechanisms regulating mGluR5 signaling and endocytosis in neurons have not been investigated. Here we show that a 2-fold overexpression of GRK2 leads to the attenuation of endogenous mGluR5-mediated inositol phosphate (InsP) formation in striatal neurons and siRNA knockdown of GRK2 expression leads to enhanced mGluR5-mediated InsP formation. Expression of a catalytically inactive GRK2-K220R mutant also effectively attenuates mGluR5 signaling, but the expression of a GRK2-D110A mutant devoid in Gαq/11 binding increases mGluR5 signaling in response to agonist stimulation. Taken together, these results indicate that the attenuation of mGluR5 responses in striatal neurons is phosphorylation-independent. In addition, we find that mGluR5 does not internalize in response to agonist treatment in striatal neuron, but is efficiently internalized in cortical neurons that have higher levels of endogenous GRK2 protein expression. When overexpressed in striatal neurons, GRK2 promotes agonist-stimulated mGluR5 internalization. Moreover, GRK2-mediated promotion of mGluR5 endocytosis does not require GRK2 catalytic activity. Thus, we provide evidence that GRK2 mediates phosphorylation-independent mGluR5 desensitization and internalization in neurons.Glutamate is the major excitatory neurotransmitter in the mammalian brain and functions to activate two distinct classes of receptors (ionotropic and metabotropic) to regulate a variety of physiological functions (13). Ionotropic glutamate receptors, such as NMDA, AMPA, and kainate receptors, are ligand-gated ion channels, whereas metabotropic glutamate receptors (mGluRs)5 are members of the G protein-coupled receptor (GPCR) superfamily (47). mGluRs modulate synaptic activity via the activation of heterotrimeric G proteins that are coupled to a variety of second messenger cascades. Group I mGluRs (mGluR1 and mGluR5) are coupled to the activation of Gαq/11 proteins, which stimulate the activation of phospholipase Cβ1 resulting in diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3) formation, release of Ca2+ from intracellular stores and subsequent activation of protein kinase C.The attenuation of GPCR signaling is mediated in part by G protein-coupled receptor kinases (GRKs), which phosphorylate GPCRs to promote the binding of β-arrestin proteins that uncouple GPCRs from heterotrimeric G proteins (810). GRK2 has been demonstrated to contribute to the phosphorylation and desensitization of both mGluR1 and mGluR5 in human embryonic kidney (HEK 293) cells (1117). GRK4 is also implicated in mediating the desensitization of mGluR1 signaling in cerebellar Purkinje cells, but does not contribute to the desensitization of mGluR5 (14, 15). In addition, GRK4 plays a major role in mGluR1 internalization (13, 14). A role for GRK2 in promoting mGluR1 internalization is less clear as different laboratories have obtained discordant results (11, 14, 15, 16). However, the only study examining the role of GRK2 in regulating mGluR1 endocytosis in a native system reported that GRK2 knockdown had no effect upon mGluR1 internalization in cerebellar Purkinje cells (14).GRK2 is composed of three functional domains: an N-terminal regulator of G protein signaling (RGS) homology (RH) domain, a central catalytic domain, and a C-terminal Gβγ binding pleckstrin homology domain (18). In HEK 293 cells, mGluR1 desensitization is not dependent on GRK2 catalytic activity. Rather the GRK2 RH domain interacts with both the second intracellular loop domain of mGluR1 and the α-subunit of Gαq/11 and attenuates second messenger responses by disrupting the mGluR1/Gαq/11 signaling complexes (12, 1921). Although the molecular mechanism underlying GRK2-mediated attenuation of mGluR1 signaling is relatively well established in HEK 293 cells, the role of GRK2 in regulating the desensitization of mGluRs in neurons remains to be determined. Moreover, it is not known whether GRK2-dependent attenuation of mGluR5 signaling is mediated by the same phosphorylation-independent mechanism that has been described for mGluR1. In a previous study, GRK2-mediated mGluR5 desensitization was reported to be phosphorylation-dependent, based on the observation that the overexpression of a catalytically inactive GRK2 (K220R) did not attenuate mGluR5 signaling (15). In the present study, we examined whether a 2-fold overexpression of GRK2 in primary mouse striatal neurons to match GRK2 expression levels found in the cortex results in increased agonist-stimulated desensitization and internalization of endogenous mGluR5. We report here that GRK2 mediates phosphorylation-independent mGluR5 desensitization and internalization. Furthermore, GRK2 knockdown causes an increase in mGluR5 signaling, demonstrating that endogenous GRK2 plays a role in mGluR5 desensitization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号