Proteome Analysis of Plasmodium falciparum Extracellular Secretory Antigens at Asexual Blood Stages Reveals a Cohort of Proteins with Possible Roles in Immune Modulation and Signaling |
| |
Authors: | Meha Singh Paushali Mukherjee Krishnamoorthy Narayanasamy Reena Arora Som Dutta Sen Shashank Gupta Krishnamurthy Natarajan Pawan Malhotra |
| |
Affiliation: | From the ‡Malaria Group and ;¶Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India and ;§The Centre for Genomic Applications, Phase-III Okhla Industrial Estate, New Delhi 110020, India |
| |
Abstract: | The highly co-evolved relationship of parasites and their hosts appears to include modulation of host immune signals, although the molecular mechanisms involved in the host-parasite interplay remain poorly understood. Characterization of these key genes and their cognate proteins related to the host-parasite interplay should lead to a better understanding of this intriguing biological phenomenon. The malaria agent Plasmodium falciparum is predicted to export a cohort of several hundred proteins to remodel the host erythrocyte. However, proteins actively exported by the asexual intracellular parasite beyond the host red blood cell membrane (before merozoite egress) have been poorly investigated so far. Here we used two complementary methodologies, two-dimensional gel electrophoresis/MS and LC-MS/MS, to examine the extracellular secreted antigens at asexual blood stages of P. falciparum. We identified 27 novel antigens exported by P. falciparum in the culture medium of which some showed clustering with highly polymorphic genes on chromosomes, suggesting that they may encode putative antigenic determinants of the parasite. Immunolocalization of four novel secreted proteins confirmed their export beyond the infected red blood cell membrane. Of these, preliminary functional characterization of two novel (Sel1 repeat-containing) parasite proteins, PfSEL1 and PfSEL2 revealed that they down-regulate expression of cell surface Notch signaling molecules in host cells. Also a novel protein kinase (PfEK) and a novel protein phosphatase (PfEP) were found to, respectively, phosphorylate/dephosphorylate parasite-specific proteins in the extracellular culture supernatant. Our study thus sheds new light on malaria parasite extracellular secreted antigens of which some may be essential for parasite development and could constitute promising new drug targets.Plasmodium falciparum is a wide spread protozoan parasite responsible for over a million deaths annually mainly among children in sub-Saharan Africa (1). Like other apicomplexan parasites such as Leishmania, Trypanosoma, and Toxoplasma, Plasmodia depend on a series of intricate and highly evolved adaptations that enable them to evade destruction by the host immune responses. These protozoan parasites have provided some of the best leads in elucidating the mechanisms to circumvent innate immunity and adaptive humoral and cellular immunity (2). Ingenious strategies to escape innate defenses include subversion of attack by humoral effector mechanisms such as complement lysis and lysis by other serum components (3), remodeling of phagosomal compartments in which they reside (4), modulation of host cell signaling pathways (5), and modification of the antigen-presenting and immunoregulatory functions of dendritic cells, which provide a crucial link with the adaptive immune response (6). Malaria parasites also predominantly use antigenic diversity and clonal antigenic variation to evade adaptive immunity of the host (7). Surface-associated and secreted parasite proteins are major players in host-parasite cross-talk and are advantageously used by the parasite to counter the host immune system. Proteins secreted by a wide range of parasitic pathogens into the host microenvironment result in symptomatic infections. For example, the excretory-secretory (ES)1 products of the parasitic fluke Fasciola hepatica are key players in host-parasite interactions (8). Among the apicomplexans, proteomics analyses of rhoptry organelles of Toxoplasma gondii have revealed many novel constituents of host-parasite interactions (9).The identification and trafficking of Plasmodium proteins exported into the host erythrocyte have been subjects of recent detailed investigations. A number of studies have identified Plasmodium proteins that contain signature sequence motifs, the host cell targeting signal or the Plasmodium export element (PEXEL), that target these proteins into the infected erythrocytes (10, 11). Recent proteomics analyses have identified novel proteins in the raftlike membranes of the parasite and on the surface of infected erythrocytes (12, 13). P. falciparum translationally controlled tumor protein (PfTCTP), a homolog of the mammalian histamine-releasing factor, has been shown to be released into the culture supernatant from intact as well as ruptured infected RBCs and causes histamine release from human basophils and IL-8 secretion from eosinophils (14). However, the total spectrum of proteins actively exported by the asexual intracellular parasite beyond the host RBC membrane (before merozoite egress) has been poorly investigated so far.In the present study, we used two complementary methodologies, two-dimensional gel electrophoresis (2DE)/MS and LC-MS/MS to examine the cohort of extracellular secreted antigens (ESAs) at asexual blood stages of P. falciparum. Our findings reveal that malaria parasites secrete a number of effector molecules such as immunomodulators and signaling proteins that are potentially involved in host-parasite interactions. Prominent among these are proteins with Sel1 domain, a protein of the LCCL family, a novel protein kinase, and a novel protein phosphatase. Secreted-extracellular/iRBC surface localization of some of these proteins was validated by immunolocalization studies. We also characterized the functions of some of these proteins in the culture supernatant, thus providing an insight into the nature of some of the malaria parasite extracellular antigens. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|