首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ENaC at the Cutting Edge: Regulation of Epithelial Sodium Channels by Proteases
Authors:Thomas R Kleyman  Marcelo D Carattino  and Rebecca P Hughey
Institution:From the Renal-Electrolyte Division, Department of Medicine, and ;the §Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
Abstract:Epithelial Na+ channels facilitate the transport of Na+ across high resistance epithelia. Proteolytic cleavage has an important role in regulating the activity of these channels by increasing their open probability. Specific proteases have been shown to activate epithelial Na+ channels by cleaving channel subunits at defined sites within their extracellular domains. This minireview addresses the mechanisms by which proteases activate this channel and the question of why proteolysis has evolved as a mechanism of channel activation.Many ion channels are silent at rest and are activated in response to a variety of factors, including membrane potential, external ligands, and intracellular signaling processes. The ENaC2 has evolved as a channel that is thought to reside primarily in an active state, facilitating the bulk movement of Na+ out of renal tubular or airway lumens. The regulated insertion and retrieval of channels at the plasma membrane have important roles in modulating ENaC-dependent Na+ transport (1). A number of factors also have a role in regulating ENaC activity via changes in channel Po or gating. In this regard, it has become increasingly apparent that proteolysis of ENaC subunits has a key role in this process (2). This minireview addresses several questions regarding the role of ENaC subunit proteolysis in regulating channel gating. (i) Where are ENaC subunits cleaved? (ii) Which proteases mediate ENaC cleavage? (iii) Why are channels activated by proteolysis? (iv) Is proteolysis responsible, in part, for the highly variable channel Po that has been noted for ENaC? (v) Why have ENaCs evolved as channels that require proteolysis for activation?
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号