首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils
Authors:Joanna M Clark  Pippa J Chapman  John K Adamson†  Stuart N Lane‡
Institution:School of Geography, University of Leeds, Leeds LS2 9JT, UK,;Environmental Change Network, Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancashire LA1 4AP, UK,;Department of Geography, University of Durham, Durham DH1 3LE, UK
Abstract:A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42?) dynamics under drought conditions has been revealed from analysis of a 10‐year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House‐Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4‐weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>?25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42?, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought‐induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42? during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought‐induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.
Keywords:acidification  climate change  DOC  drought  organic carbon  peat  pH  sulphate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号