首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Purification and reconstitution of the N,N'-dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chloroplasts.
Authors:U Pick  E Racker
Abstract:The dicyclohexylcarbodiimide-sensitive ATPase from spinach chloroplast has been isolated. On sodium dodecyl sulfate gels, seven different polypeptides were seen. Five of these polypeptides coincided with the CF1 subunits, a 7,500-dalton peptide was identified as the proteolipid which interacts with 14C]dicyclohexylcarbodiimide, and there was a 15,500-dalton hydrophobic polypeptide with unknown function. In two-dimentional gels, two additional peptides were resolved, one 17,500 daltons (co-migrating in sodium dodecyl sulfate gels with subunit delta) and one 13,500 daltons (co-migrating with subunit epsilon). Reconstitution was obtained by freezing and thawing the complex with a crude mixture of phospholipids. After reconstitution the complex catalyzed 32P1-ATP exchange (rates of 200 to 400 nmoles x mg-1 x min-1) and ATP formation during acid-to-base transition. These reactions were inhibited by dicyclohexylcarbodiimide and uncouplers. Uncouplers at low concentrations stimulated and at high concentrations inhibited the Mg2+-ATPase activity. ATP hydrolysis and 32P1-ATP exchange were catalyzed by the complex in the presence of either Mg2+ or Mn2+ but not with Ca2+ or Co2+. ATP and GTP were substrates for the exchange reaction but not ADP or CTP.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号