首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced mixing and mass transfer in a recirculation loop results in high cell densities in a roller bottle reactor
Authors:Berson R Eric  Pieczynski William J  Svihla C Kurt  Hanley Thomas R
Institution:Speed Scientific School, University of Louisville, Louisville, KY 40292, USA.
Abstract:A recirculation loop added to a large-scale roller bottle reactor resulted in high cell densities as compared to standard roller bottles. Four different mammalian cell lines reached an average maximum density equal to 5.4 x 10(6) cells /mL (sigma = 0.263), which was between 2.13 and 2.95 times greater than the densities in roller bottles without recirculation using the same cell lines. The high densities were maintained over long durations (>25 days) while the reactor operated with continuous perfusion. The increased densities are attributed to enhanced liquid mixing and oxygen transfer that occur as a result of the recirculation loop. Models were developed that describe axial liquid flow and oxygen transfer in both the sample loop and the reactor growth chamber. Axial dispersion and oxygen transfer coefficients are presented for a variety of operating conditions. The increased oxygen transfer characteristics of the reactor allow for easy scale-up of roller bottle cultures by operating at larger volumes with greater liquid depths than conventional roller bottles permit. The surface-area-to-volume ratio in the tests performed was 0.206 versus 1.16 cm(-1) in a standard roller bottle.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号