首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Maternal folate deficiency results in selective upregulation of folate receptors and heterogeneous nuclear ribonucleoprotein-E1 associated with multiple subtle aberrations in fetal tissues
Authors:Xiao Suhong  Hansen Deborah K  Horsley Elizabeth T M  Tang Ying-Sheng  Khan Rehana A  Stabler Sally P  Jayaram Hiremagalur N  Antony A?ok C
Institution:Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5254, USA.
Abstract:BACKGROUND: Homocysteine, which increases in folate deficiency, can upregulate folate receptors (FR) at the translational level by increasing the interaction between a short cis-element in the 5'-untranslated region of FR-alpha mRNA and heterogeneous nuclear ribonucleoprotein-E1 (hnRNP-E1). Perturbation of this RNA-protein interaction on GD8.5 induces neural tube defects and neurocristopathies in mice. FR upregulation can also reduce cell proliferation independently of folate deficiency in some human cells. Accordingly, we tested the hypothesis that sustained murine maternal folate deficiency would negatively impact pregnancy outcomes, upregulate FR, and selectively reduce fetal cell proliferation. METHODS: Dams were fed chow with various levels of folic acid added for eight weeks before and throughout pregnancy. Following sacrifice on GD17, dams were compared for folate and homocysteine status as well as pregnancy outcomes. Fetuses from some groups were evaluated by specific biochemical, molecular, and immunohistochemical studies for FR, hnRNP-E1, and apoptosis. RESULTS: When compared to dams fed a folate-replete diet, those dams on a folate-depleted diet developed reduced red cell folates and hyperhomocysteinemia and an inverse dose-dependent upregulation of FR and hnRNP-E1 on GD17 without alterations in cell number in the majority of tissues. However, FR overexpression was accompanied by a significant reduction in the net number of cells in the midgut, lung, pons, tongue, and olfactory epithelium, and with premature differentiation in dorsal root ganglion cells and dysplasia of taste buds. By contrast, in the brain, spinal cord, diaphragm, and primordium of follicles of vibrissae, there was less FR expression, which accompanied a net reduction in number of cells and architectural anomalies. Subtle "immunohistochemical footprints" of apoptosis on GD17 fetuses corresponded with net cell loss in the lung and olfactory epithelium. Upregulation of FR could be explained by a homocysteine-induced RNA-protein interaction in folate-depleted fetuses that led to a proportionate increase in murine FR biosynthesis. CONCLUSIONS: Maternal folate deficiency results in selective upregulation of FR and hnRNP-E1 associated with multiple aberrations in fetal tissues that include increased cell loss, architectural anomalies, and premature differentiation. The potential significance of these findings to explain the wide spectrum of folate-responsive birth defects in humans is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号