首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neurospora tryptophan synthase. Characterization of the pyridoxal phosphate binding site
Authors:M L Pratt  J A DeMoss
Institution:Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston 77225.
Abstract:Tryptophan synthase, which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein that requires pyridoxal phosphate for two of its three distinct enzyme activities. Tryptophan synthase from Neurospora crassa, a homodimer of two 75-kDa subunits, was shown to bind 1 mol of pyridoxal phosphate/mol of subunit with a calculated dissociation constant for pyridoxal phosphate of 1.1 microM. The spectral properties of the holoenzyme, apoenzyme, and reconstituted holoenzyme were characterized and compared to those previously established for the heterotetrameric (alpha 2 beta 2) enzyme from Escherichia coli. The Schiff base formed between pyridoxal phosphate and the enzyme was readily reduced by sodium borohydride, but not sodium cyanoborohydride. The active site residue that binds pyridoxal phosphate, labeled by reduction of the Schiff base with tritium-labeled sodium borohydride, was determined to be lysine by high performance liquid chromatography analysis of the protein hydrolysate. A 5400-dalton peptide containing the reduced pyridoxal phosphate moiety was generated by cyanogen bromide treatment, purified and sequenced. The sequence is 85% homologous with the corresponding sequence obtained for yeast tryptophan synthase (Zalkin, H., and Yanofsky, C. (1982) J. Biol. Chem. 257, 1491-1500); the lysine derivatized by pyridoxal phosphate is located at the same relative position as that in the yeast and E. coli enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号