首页 | 本学科首页   官方微博 | 高级检索  
     


Display of heterologous proteins on the surface of Lactococcus lactis using the H and W domain of PrtB from Lactobacillus delburueckii subsp. bulgaricus as an anchoring matrix
Authors:Kim T W  Igimi S  Kajikawa A  Kim H Y
Affiliation: Institute of Life Sciences &Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea;
 Division of Biomedical Food Research, National Institute of Health Sciences, Tokyo, Japan
Abstract:Aims: The aim of this study was to develop a cell‐surface display system for foreign antigens on the surface of a Lactococcus lactis strain using an H and W domain of PrtB from Lactobacillus delburueckii subsp. bulgaricus as an anchoring matrix. Methods and Results: To construct a cell‐surface display pACL1 vector, a derivative of pSECE1 vector, we amplified the H and W domain of the cell‐surface proteinase Prt B from Lact. bulgaricus using specific primers and then cloned it into a site downstream of the secretion signal sequence in the pSECE1 vector. The new system, designed for cell‐surface display of recombinant proteins on L. lactis, was evaluated by the expression and display of the FliC protein of Salmonella enterica serovar Enteritidis as a reporter gene (pALC1:FliC). The expression of the FliC protein by the transformed cells was analysed by Western blot analysis, and the localization of FliC on the cell surface was confirmed by immunofluorescence microscopy and flow cytometry analysis. A specific band corresponding in size (approx. 110 kDa) to FliC plus the anchor residues was detected by anti‐FliC antibody in the cell extract of L. lactis H61 harbouring pALC1:FliC, but not L. lactis H61 harbouring pALC1. In addition, flow cytometry and immunofluorescence microscopy revealed FliC‐specific positive signals and a significant increase of fluorescence, respectively, in cells harbouring pALC1:FliC compared with that in control cells harbouring the parental pALC1 plasmid. These findings demonstrated that FliC was successfully displayed on the cell surface by the anchor domain of PrtB. Conclusions: A pALC1 vector using the H and W domain of PrtB from Lact. bulgaricus as an anchoring matrix can be used to successfully display the FliC protein on the surface of L. lactis. Significance and Impact of the Study: This novel way of displaying heterologous proteins on the cell surface of L. lactis using the PrtB anchor domain should prove useful for the delivery of antigens and other proteins.
Keywords:anchor    cell-surface display    delivery vehicle    Lactococcus lactis    PrtB
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号