首页 | 本学科首页   官方微博 | 高级检索  
     


Luminescence studies of saccharide binding to wheat germ agglutinin (lectin).
Authors:J P Privat  M Monsigny
Abstract:The fluorescence and phosphorescence emission of wheat germ agglutinin are reported. Fluorescent tryptophan residues of wheat germ agglutinin are found highly exposed to solvent: fluorescence quenching induced by temperature fits with a single Arrhenius critical energy close to that of tryptophan in solution; the whole fluorescence emission is susceptible to iodide ion quenching and data reveal the homogeneity of fluorescence arising from only one type of tryptophan exposition. Energy transfers are analyzed at singlet and triplet state level. Tyrosine fluorescence at 25 degrees C is very weak. Results obtained from the relative excitation fluorescence quantum yield and from intrinsic fluorescence polarization show that a large amount of energy absorbed by tyrosine at 280 nm is transferred to tryptophan residues. However, tyrosine fluorescence is highly increased at 70 degrees C although disulfide bridges are not reduced. The phosphorescence spectrum at 77 K in 50% ethylene glycol is finely structured with several resolved vibrational bands at 405, 432 and 455 nm. Phosphorescence decay can be fitted with a single exponential. Lifetime is independent of excitation wave-length. Its value is very close to that of free tryptophan. Influence of tri-N-acetyl-chitotriose binding on luminescence properties are investigated. Results are analyzed in terms of steric tryptophan-ligand relationships. It is shown that all the fluorescent chromophores are concerned by the ligand binding but all fluorescence emission is still susceptible to iodide ion quenching. There is no change induced in energy transfer at the singlet state level and no modification in triplet state population.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号