首页 | 本学科首页   官方微博 | 高级检索  
     


Persistent functional and structural retinal anomalies in newborn rats exposed to hyperoxia.
Authors:P Lachapelle  O Dembinska  L M Rojas  J Benoit  G Almazan  S Chemtob
Affiliation:Department of Ophthalmology, McGill University-Montréal Children's Hospital Research Institute, Canada. MDPL@MUSICA.MCGILL.CA
Abstract:Previous studies have shown that newborn rats exposed postnatally to hyperoxia will develop a permanent impairment of the retinal function as determined with the electroretinogram (ERG). The purpose of our study was to examine whether postnatal hyperoxia equally alters the light- and dark-adapted ERGs and oscillatory potentials (OPs) as well as leads to permanent structural modification of the retina. During the first 14 days of life, cohorts of Sprague-Dawley rats were exposed to a hyperoxic environment, and ERGs were recorded at mean ages of approximately 25 and 55 days. Our results indicate that both light- and dark-adapted ERGs and OPs are already significantly altered within a few days following exposure to hyperoxia. None of the ERG and (or) OP parameters, with the exception of the a-wave, returned to normal values by 55 days of age. In fact some dark-adapted OPs were completely abolished following postnatal O2 exposure. Histological analysis revealed that the retina of rats exposed to hyperoxia failed to develop an outer plexiform layer and had a reduced count of horizontal cells, consistent with the permanent postreceptoral anomalies seen in the ERG responses. Our results suggest that postnatal hyperoxia causes a generalized retinal disorder leading to permanent structural modifications of the retinal cytoarchitecture and lasting anomalies of the rod and cone functions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号