首页 | 本学科首页   官方微博 | 高级检索  
     


Antiviral activity of 3(2H)- and 6-chloro-3(2H)-isoflavenes against highly diverged, neurovirulent vaccine-derived, type2 poliovirus sewage isolates
Authors:Shulman Lester M  Sofer Danit  Manor Yossi  Mendelson Ella  Balanant Jean  Salvati Anna Laura  Delpeyroux Francis  Fiore Lucia
Affiliation:Central Virology Laboratory, Public Health Services Israel Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel. lester.shulman@sheba.health.gov.il
Abstract:

Background

Substituted flavanoids interfere with uncoating of Enteroviruses including Sabin-2 polio vaccine strains. However flavanoid resistant and dependent, type-2 polio vaccine strains (minimally-diverged), emerged during in vitro infections. Between 1998–2009, highly-diverged (8 to >15%) type-2, aVDPV2s, from two unrelated persistent infections were periodically isolated from Israeli sewage.

Aim

To determine whether highly evolved aVDPV2s derived from persistent infections retained sensitivity to isoflavenes.

Methods

Sabin-2 and ten aVDPV2 isolates from two independent Israeli sources were titered on HEp2C cells in the presence and absence of 3(2H)- Isoflavene and 6-chloro-3(2H)-Isoflavene. Neurovirulence of nine aVDPV2s was measured in PVR-Tg-21 transgenic mice. Differences were related to unique amino acid substitutions within capsid proteins.

Principal Findings

The presence of either flavanoid inhibited viral titers of Sabin-2 and nine of ten aVDPV2s by one to two log10. The tenth aVDPV2, which had unique amino acid substitution distant from the isoflavene-binding pocket but clustered at the three- and five-fold axies of symmetry between capsomeres, was unaffected by both flavanoids. Genotypic neurovirulence attenuation sites in the 5′UTR and VP1 reverted in all aVDPV2s and all reacquired a full neurovirulent phenotype except one with amino acid substitutions flanking the VP1 site.

Conclusion

Both isoflavenes worked equally well against Sabin 2 and most of the highly-diverged, Israeli, aVDPV2s isolates. Thus, functionality of the hydrophobic pocket may be unaffected by selective pressures exerted during persistent poliovirus infections. Amino acid substitutions at sites remote from the drug-binding pocket and adjacent to a neurovirulence attenuation site may influence flavanoid antiviral activity, and neurovirulence, respectively.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号