首页 | 本学科首页   官方微博 | 高级检索  
     


Biodehalogenation of bromotrichloromethane and 1,2-dibromo-3-chloropropane by Pseudomonas putida PpG-786
Authors:Lam T  Vilker V L
Affiliation:Department of Chemical Engineering and National Center for Intermedia Transport Research, University of California, Los Angeles, Los Angeles, California 90024.
Abstract:Biodehalogenation of 10(-5) M concentrations of bromotrichloromethane (BTM) and 1,2-dibromo-3-chloropropane (DBCP) was studied in static cultures of Pseudomonas putida PpG-786. The experimental cultures were prepared by growing P. putida on camphor, which is known to induce the synthesis of high concentrations of cytochrome P-450 in this bacterium. Measurements of bromide ion release were found to be approximately consistent with the amounts of halocarbon degraded. Gas chromatography/elctron capture detection (GC/ECD) measurements of hydrocarbon degradation products as a function of incubation time showed the transitory appearance of chloroform and bromodichloromethane from BTM and the transitory appearance of lower boiling but unidentified products from DBCP. The degradation of BTM to trihalomethanes and the halide ion is consistent with the enzymatic reductive dehalogenation by cytochrome P-450 reported by others. The dependence of initial conversion rates on halocarbon concentration (0.1-2 ppm) and cell mass concentration (1-28 g cell/L) was determined by measuring the decline of parent halocarbon in stirred batch cell suspensions. The rate of DBCP conversion was up to 10-fold higher than the rate of BTM conversion. When the intracellular, enzyme-catalyzed conversion BTM is analyzed by the effectiveness factor of heterogeneous catalysis, the initial conversion rates measured suggest that intrinsic enzyme kinetics, rather than halocarbon permeation of the cell membrane or other diffusive processes, is rate limiting.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号