首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determinants of the pH of the Golgi complex
Authors:Schapiro F B  Grinstein S
Institution:Cell Biology Programme, Research Institute, The Hospital for Sick Children and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada.
Abstract:The factors contributing to the establishment of the steady state Golgi pH (pH(G)) were studied in intact and permeabilized mammalian cells by fluorescence ratio imaging. Retrograde transport of the nontoxic B subunit of verotoxin 1 was used to deliver pH-sensitive probes to the Golgi complex. To evaluate whether counter-ion permeability limited the activity of the electrogenic V-ATPase, we determined the concentration of K(+) in the lumen of the Golgi using a null point titration method. The K(+)] inside the Golgi was found to be close to that of the cytosol, and increasing its permeability had no effect on pH(G). Moreover, the capacity of the endogenous counter-ion permeability exceeded the rate of H(+) pumping, implying that the potential across the Golgi membrane is negligible and has little influence on pH(G). The V-ATPase does not reach thermodynamic equilibrium nor does it seem to be allosterically inactivated at the steady state pH(G). In fact, active H(+) pumping was detectable even below the resting pH(G). A steady state pH was attained when the rate of pumping was matched by the passive backflux of H(+) (equivalents) or "leak." The nature of this leak pathway was investigated in detail. Neither vesicular traffic nor H(+)/cation antiporters or symporters were found to contribute to the net loss of H(+) from the Golgi. Instead, the leak was sensitive to voltage changes and was inhibited by Zn(2+), resembling the H(+) conductive pathway of the plasma membrane. We conclude that a balance between an endogenous leak, which includes a conductive component, and the H(+) pump determines the pH at which the Golgi lumen attains a steady state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号