首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera,Culicidae) larvae
Authors:Krishnareddy Bayyareddy  Tracy M Andacht  Mohd Amir Abdullah  Michael J Adang
Institution:1. Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000 Porto Alegre, RS, Brazil;2. Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil;3. Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil
Abstract:Novel Bacillus thuringiensis subsp. israelensis (Bti) Cry4Ba toxin-binding proteins have been identified in gut brush border membranes of the Aedes (Stegomyia) aegypti mosquito larvae by combining 2-dimensional gel electrophoresis (2DE) and ligand blotting followed by protein identification using mass spectrometry and database searching. Three alkaline phosphatase isoforms and aminopeptidase were identified. Other Cry4Ba binding proteins identified include the putative lipid raft proteins flotillin and prohibitin, V-ATPase B subunit and actin. These identified proteins might play important roles in mediating the toxicity of Cry4Ba due to their location in the gut brush border membrane. Cadherin-type protein was not identified, although previously, we identified a midgut cadherin AgCad1 as a putative Cry4Ba receptor in Anopheles gambiae mosquito larvae Hua, G., Zhang, R., Abdullah, M.A., Adang, M.J., 2008. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 47, 5101–5110]. Other identified proteins in this study that might have lesser roles include mitochondrial proteins such as ATP synthase subunits, mitochondrial processing peptidase and porin; which are likely contaminants from mitochondria and are not brush border membrane components. Trypsin-like serine protease was also identified as a protein that binds Cry4Ba. Identification of these toxin-binding proteins will lead to a better understanding of the mode of action of this toxin in mosquito.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号