首页 | 本学科首页   官方微博 | 高级检索  
   检索      


SpoIIB localizes to active sites of septal biogenesis and spatially regulates septal thinning during engulfment in bacillus subtilis
Authors:Perez A R  Abanes-De Mello A  Pogliano K
Institution:Department of Biology, University of California, San Diego, La Jolla, California 92093-0349, USA.
Abstract:A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulges into the mother cell, similar to the situation in spoIID, spoIIM, and spoIIP mutants. However, unlike the sporangia of those three mutants, spoIIB mutant sporangia are able to complete engulfment; indeed, by time-lapse microscopy, sporangia with prominent bulges were found to complete engulfment. Electron micrographs showed that in spoIIB mutant sporangia the dissolution of septal peptidoglycan is delayed and spatially unregulated and that the engulfing membranes migrate around the remaining septal peptidoglycan. These results demonstrate that mother cell membranes will move around septal peptidoglycan that has not been completely degraded and suggest that SpoIIB facilitates the rapid and spatially regulated dissolution of septal peptidoglycan. In keeping with this proposal, a SpoIIB-myc fusion protein localized to the sporulation septum during its biogenesis, discriminating between the site of active septal biogenesis and the unused potential division site within the same cell.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号